Quasigeodesic flows on hyperbolic 3-manifolds

Danny Calegari

Tuesday June 30, 2015
Flows on 3-manifolds

M a closed 3-manifold, $\phi : \mathbb{R} \times M \rightarrow M$ a non-singular flow.

Basic Question: When does ϕ have a closed orbit?
Seifert Conjecture (1950): Every nonsingular flow on S^3 has a closed orbit.

Schweitzer (1974): False! Every homotopy class of flow on every 3-manifold contains a (C^1) representative with no closed orbit.

Schweitzer shows closed orbits can be busted by inserting local “plugs”.

Many later analytic improvements (Harrison, Kuperberg, etc.); image P. Schweitzer
Positive results for restricted classes of flows.

Taubes (Weinstein Conjecture 2007): Reeb vector fields have closed orbits.

Reeb flows are geodesible; i.e. there is a metric for which flowlines are geodesics.

Rechtman (2010): Analytic geodesible flows have closed orbits.

except for the ones that obviously don't
Anosov flows: $\mathcal{T}M = \mathcal{T}\Phi \oplus E^+ \oplus E^-$ invariant by $D\Phi$. E^+ is stretched by the flow, E^- is shrunk.

Closing lemma: In an Anosov flow, near any almost-closed orbit there is an actual closed orbit.

Key Example: Geodesic flow on unit tangent bundle of hyperbolic surface.

Closing lemma holds for pseudo-Anosov flows.
Key Example (Thurston): A surface automorphism $\phi : \Sigma \to \Sigma$ has hyperbolic mapping torus

$$M_\phi := \Sigma \times [0, 1]/(s, 1) \sim (\phi(s), 0)$$

if and only if ϕ is homotopic to a pseudo-Anosov map.

The suspension flow of a pseudo-Anosov map is pseudo-Anosov.

Theorem (Agol): every hyperbolic 3-manifold has a finite cover which arises in this way.
Quasigeodesics: A map $f : \mathbb{R} \rightarrow \mathbb{H}^3$ is quasigeodesic if there are k, ϵ such that for all $x, y \in \mathbb{R}$,

$$k(x - y) + \epsilon \geq d(f(x), f(y)) \geq k^{-1}(x - y) - \epsilon$$

QG flows: A flow Φ on hyperbolic M^3 is *quasigeodesic* if the flowlines in the universal cover are quasigeodesics.
Example (Zeghib): If M fibers over S^1, any flow transverse to the fibers is QG.

Proof: There is a closed, nondegenerate 1-form α strictly positive on the tangents to the flowlines.
Example (Mosher): QG flow Φ on \tilde{M} containing a closed nonseparating surface S and a closed geodesic γ.

Every flowline in \tilde{M} crosses lifts of S with definite frequency, or contains long segments which very closely follow lifts of γ.
Example: Any flow in which the geodesic curvature k of the flowlines satisfies $|k| \leq C < 1$ for some constant C is QG.

NonExample (Zeghib): No hyperbolic 3-manifold admits a totally geodesic flow.

Question: Are there QG flows with $|k| \leq \epsilon$ for every positive ϵ?
Example (Fenley-Mosher): QG flows almost transverse to any finite depth foliation.

Theorem (Gabai): Every irreducible 3-manifold with $H^1(M) > 0$ has a finite depth foliation.
Let \mathbb{H}^3 be the universal cover of M, and $\tilde{\Phi}$ the flow on \mathbb{H}^3. By assumption, flowlines of $\tilde{\Phi}$ are quasigeodesic.

Lemma: The leaf space P of $\tilde{\Phi}$ is Hausdorff, and homeomorphic to the plane.

We obtain an action of $\pi_1(M)$ on P by homeomorphisms.

Closed orbits of the flow correspond to fixed points for nontrivial elements of π_1 on P.
A quasigeodesic γ in \mathbb{H}^3 is a bounded distance from a unique geodesic $\bar{\gamma}$. Thus it is asymptotic to two distinct endpoints $e^{\pm}(\gamma) \in S^2_\infty$

For Φ QG, there are two (continuous) endpoint maps $e^{\pm} : P \rightarrow S^2_\infty$

equivariant with respect to the action of π_1.

Lifts of a closed orbit in a quasigeodesic flow
There is a partition of P into connected components of point preimages under e^{+} (resp. e^{-}). Let D^{+} (resp. D^{-}) denote the elements of the partition.

Lemma:

1. Elements of D^{\pm} are unbounded.
2. If $\mu \in D^{+}$ and $\lambda \in D^{-}$ then $\mu \cap \lambda$ is compact.
Idea of Proof: Suppose $K \subset P$ closed disk such that $e^+(\partial K)$ separates S_∞^2.

Choose $\sigma : K \to \mathbb{H}^3$ section of orbit. There is a proper disk $L \subset \mathbb{H}^3$ made from $\sigma(K)$ and the forward orbit of $\sigma(\partial K)$ under $\tilde{\Phi}$. L bounds region R so that every flowline in R leaves R in negative time.

Image $e^-(P)$ is π_1-invariant, hence dense, hence some flowline ℓ is trapped by L for all negative time; contradiction.
Key idea: Elements of D^\pm are “like” the stable/unstable leaves of a pseudo-Anosov flow.

Key Conjecture: Every QG flow is homotopic (through QG flows) to a QG pseudo-Anosov flow.

Key approach: Work with structures “at infinity”.
Circular order: Each element λ of D^\pm is closed and unbounded, and can be compactified by its set of ends $\mathcal{E}(\lambda)$.

Lemma: $\mathcal{E} := \bigcup_{\lambda \in D^+ \cup D^-} \mathcal{E}(\lambda)$ has a natural circular order, and can be π_1-equivariantly completed to a universal circle S^1_u.

Lemma: Action of π_1 on S^1_u is faithful.

Corollary: Many examples of hyperbolic 3-manifolds without quasigeodesic flows (e.g. Weeks manifold).

Corollary: Euler classes of QG flows on hyperbolic M detect the Thurston norm.
Invariant laminations

For $\mu, \lambda \in D^+$, the sets $E(\mu), E(\lambda) \subset S_u^1$ are unlinked.

Lemma: For some μ, $|E(\mu)| > 1$.

Proof: If not, $|E(\mu)| = 1$ for all μ, so there is a retraction $\overline{P} \to S_u^1$ that sends each μ to $E(\mu)$. This is absurd.

Corollary: Nonempty π_1-invariant laminations Λ^\pm of S_u^1.
Compactification of flow space

Theorem (Frankel):

1. $P \cup S^1_u$ can be naturally topologized as a closed disk \overline{P}.
2. The maps $e^\pm : P \to S^2_\infty$ extend *continuously* and π_1-equivariantly to
 \[
 \overline{e}^\pm : \overline{P} \to S^2_\infty
 \]

Special case: Cannon-Thurston extension theorem.

Corollary: Peano sphere-filling circles from QG flows
Theorem (Frankel): Every QG flow has closed orbits.

Idea: Find a “large-scale” substitute for Anosov closing Lemma.

Technical issue: To find substitute for strong stable/unstable foliations.
There is a *straightening map* $s : \mathbb{H}^3 \to U T \mathbb{H}^3$ which takes each flowline to the geodesic with the same endpoints.

Strong stable/unstable foliation of geodesic flow on $U T \mathbb{H}^3$ pulls back under s.

Work with preimage of these foliations.
Anosov behavior (in the large) is most clear for a flowline \(\ell \) contained in \(\mu \in D^+ \) and \(\lambda \in D^- \) each with at least two ends, which link at infinity.

Technical Lemma: There are flowlines whose images in \(M \) are recurrent, which display such Anosov behavior.