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Non abelian Fourier analysis

G a group.

A linear representation of G is a group homomorphism:

G → GL(V )

V is a vector space over C. It is called irreducible if 0 and V are
the only G -invariant subspaces.

... representations are key to the understanding of the group G
from the algebraic point of view ... and the also the analytic point
of view.
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Example 1: if G = (R/Z,+) the circle group, or one-dimensional
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Irreducible representations of G are the one-dimensional characters
πn, for n ∈ Z defined by:
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x 7→ e−2iπnx
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Example 1: if G = (R/Z,+) the circle group, or one-dimensional
torus.

Irreducible representations of G are the one-dimensional characters
πn, for n ∈ Z defined by:

πn : G → GL1(C)

x 7→ e−2iπnx

Fourier analysis tells us that functions on G can be
represented by linear combinations of characters.



Non abelian Fourier analysis

Example 1: if G = (R/Z,+) the circle group, or one-dimensional
torus.

Irreducible representations of G are the one-dimensional characters
πn, for n ∈ Z defined by:

πn : G → GL1(C)

x 7→ e−2iπnx

Namely, we have the Fourier inversion formula for
f : R/Z→ C :

f (x) =
∑
n∈Z

fn(x) =
∑
n∈Z

f̂ (n)πn(−x),

where f̂ (n) :=
∫
R/Z f (x)πn(x)dx is the Fourier transform of f .
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Example 2: Now assume that G is a finite group.

Irreducible representations of G are finite-dimensional, there is one
for each conjugacy class of G , and the Fourier inversion formula
reads, for f : G → C :

f (x) =
∑
π∈Ĝ

fπ(x)
dπ
|G |

=
∑
π∈Ĝ

〈f̂ (π), π(x)〉 dπ
|G |

,

where
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Irreducible representations of G are finite-dimensional, there is one
for each conjugacy class of G , and the Fourier inversion formula
reads, for f : G → C :

f (x) =
∑
π∈Ĝ

fπ(x)
dπ
|G |

=
∑
π∈Ĝ

〈f̂ (π), π(x)〉 dπ
|G |

,

where

• dπ is an integer: the dimension of the representation space
of π.

• Ĝ is the set of (equivalence classes of) irreducible
representations of G ,
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Example 2: Now assume that G is a finite group.

Irreducible representations of G are finite-dimensional, there is one
for each conjugacy class of G , and the Fourier inversion formula
reads, for f : G → C :

f (x) =
∑
π∈Ĝ

fπ(x)
dπ
|G |

=
∑
π∈Ĝ

〈f̂ (π), π(x)〉 dπ
|G |

,

where

• f̂ (π) := π(f ) =
∑

x∈G f (x)π(x) is an operator on the
representation space of π.

• the scalar product is 〈A,B〉 = Tr(AB∗).
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Example 2 continued: cards shuffling

Suppose G acts transitively on a finite set X , i.e. G → Sym(X ),
and let µ be a probability measure on G .

This gives rise to a random walk on X : jump from x ∈ X to gx
with probability µ(g).
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Example 2 continued: cards shuffling

Suppose G acts transitively on a finite set X , i.e. G → Sym(X ),
and let µ be a probability measure on G .

This gives rise to a random walk on X : jump from x ∈ X to gx
with probability µ(g).

Basic question: How fast does the walk approach equilibrium?

Answer: depends on the size of ‖π(µ)‖, for the irreducible
subrepresentations π of `2(X ).
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Example 2 continued: cards shuffling

Suppose G acts transitively on a finite set X , i.e. G → Sym(X ),
and let µ be a probability measure on G .

This gives rise to a random walk on X : jump from x ∈ X to gx
with probability µ(g).

Indeed by Fourier inversion, for f : X → C.

∫
G
f (gx)dµn(g) =

∑
π∈Ĝ

〈f̂ (·x)(π), π(µ)n〉 dπ
|G |

=
1

|X |
∑
y∈X

f (y) +
∑

π∈Ĝ\{1}

〈f̂ (·x)(π), π(µ)n〉 dπ
|G |
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What about more general (say locally compact separable) groups ?

→ restrict attention to unitary representations of G , i.e.
(continuous) homomorphisms

G → U(H),

where H is a Hilbert space, and U(H) the group of unitary
isomorphisms of H.

Let Ĝ be the unitary dual of G (equivalence classes of irreducible
unitary representations). It has a canonical Borel structure
(Mackey).

→ We would like to have a Fourier inversion formula for G .
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→ We would like to have a Fourier inversion formula for G .

Works well for compact groups (Peter-Weyl), abelian locally
compact groups (Pontryagin dual), and more generally for the

groups of type 1 = groups for which Ĝ is countably separated.

For these groups we have a Fourier inversion formula, for
f : G → C (nice enough):

f (x) =

∫
Ĝ
fπ(x)dµ(π)

where fπ(x) := Tr(π(f )π(x)∗), and dµ is a Borel measure on Ĝ . It
is called the Plancherel measure and is unique.
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Many groups are type 1 (compact, abelian locally compact,
algebraic groups over local fields, etc)... but many are not.

In fact if G is a discrete countable group, G is type 1 if and only if
G is virtually abelian (Thoma 1964).
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a unitary representation σ, if matrix coefficients of π can be
approximated uniformly on compact sets by convex combinations
of matrix coefficients of σ. Notation: π ≺ σ.



Weak containment

Recall: A unitary representation π is said to be weakly contained in
a unitary representation σ, if matrix coefficients of π can be
approximated uniformly on compact sets by convex combinations
of matrix coefficients of σ. Notation: π ≺ σ.

matrix coefficient = a function on G on the form
g 7→ 〈π(g)v ,w〉 for vectors v ,w ∈ Hπ)

• The support of the Plancherel measure is precisely the set
of irreducible representations that are weakly contained in the
regular representation λG , namely the action of G by left
translations on L2(G ,Haar).



Weak containment

Recall: A unitary representation π is said to be weakly contained in
a unitary representation σ, if matrix coefficients of π can be
approximated uniformly on compact sets by convex combinations
of matrix coefficients of σ. Notation: π ≺ σ.

• A consequence of the Fourier inversion formula is that we
have decomposed λG into irreducibles:

λG =

∫
X
πxdm(x)



Weak containment

Recall: A unitary representation π is said to be weakly contained in
a unitary representation σ, if matrix coefficients of π can be
approximated uniformly on compact sets by convex combinations
of matrix coefficients of σ. Notation: π ≺ σ.

• G is amenable if the trivial representation of G (equivalently
any irreducible rep.) is weakly contained in the regular
representation λG .



Weak containment

Recall: A unitary representation π is said to be weakly contained in
a unitary representation σ, if matrix coefficients of π can be
approximated uniformly on compact sets by convex combinations
of matrix coefficients of σ. Notation: π ≺ σ.

• G has Kazhdan’s property (T ) if the trivial representation of
G (equivalently any irreducible rep.) is weakly contained in no
unitary representation without non-zero G -invariant vector.



Weak containment

Recall: A unitary representation π is said to be weakly contained in
a unitary representation σ, if matrix coefficients of π can be
approximated uniformly on compact sets by convex combinations
of matrix coefficients of σ. Notation: π ≺ σ.

• The condition of weak containment π ≺ σ is equivalent to
the condition ‖π(f )‖ 6 ‖σ(f )‖ for every f ∈ Cc(G ).
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Example 3: G is the free group on 2 generators.



Weak containment

Example 3: G is the free group on 2 generators.

Given x ∈ G \ {1}, one can restrict f ∈ `2(G ) to each coset of the cyclic
subgroup 〈x〉 and perform ordinary Fourier transform on this cyclic
subgroup.

Get a decomposition:

λG =

∫
R/Z

IndG
〈x〉χtdt,

where χt : 〈x〉 ' Z→ GL1(C) is the character χt(x
n) = e2iπnt .
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Example 3: G is the free group on 2 generators.

Get a decomposition:

λG =

∫
R/Z

IndG
〈x〉χtdt,

where χt : 〈x〉 ' Z→ GL1(C) is the character χt(x
n) = e2iπnt .

Let CG (x) be the centralizer of x in G .

Mackey: for x , y ∈ G \ {1}, and s, t ∈ R/Z,

I IndG
〈x〉χt is irreducible, and

I if CG (x) 6= CG (y), then IndG
〈x〉χt is not equivalent to IndG

〈y〉χs .



Weak containment

Example 3: G is the free group on 2 generators.

Mackey: for x , y ∈ G \ {1}, and s, t ∈ R/Z,

I IndG
〈x〉χt is irreducible, and

I if CG (x) 6= CG (y), then IndG
〈x〉χt is not equivalent to IndG

〈y〉χs .

So if x and y do not commute, we obtain 2 distinct decompositions of
λG = `2(G ) with disjoint supports on Ĝ !

λG =

∫
R/Z

πt,xdt =

∫
R/Z

πs,yds

where πt,x := IndG
〈x〉χt .
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Suppose G is a countable discrete group.

Definition
G is said to be C ∗-simple, if every unitary representation of G ,
which is weakly contained in the regular representation λG is
weakly equivalent to λG .

Remarks:



C ∗-simple groups
Suppose G is a countable discrete group.

Definition
G is said to be C ∗-simple, if every unitary representation of G ,
which is weakly contained in the regular representation λG is
weakly equivalent to λG .

Remarks:

It is the opposite of type 1, in a sense : only the trivial group
is type 1 and C ∗-simple among discrete groups.

[ non discrete C ∗-simple locally compact groups exist, but
they are totally disconnected (S. Raum 2015). ]



C ∗-simple groups
Suppose G is a countable discrete group.

Definition
G is said to be C ∗-simple, if every unitary representation of G ,
which is weakly contained in the regular representation λG is
weakly equivalent to λG .

Remarks:

It is equivalent to the simplicity (= no non-trivial closed
∗-invariant bi-submodule) of the reduced C ∗-algebra C ∗λ(G )
of the group G ,

C ∗λ(G ) = closure of the group algebra C[G ] when viewed as a

subalgebra of operators on `2(G ) acting by convolution.
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Definition
G is said to be C ∗-simple, if every unitary representation of G ,
which is weakly contained in the regular representation λG is
weakly equivalent to λG .

Remarks:

If G has a non-trivial normal amenable subgroup N, then G is
not C ∗-simple: λG/N = `2(G/N) is weakly contained in λG ,
but not weakly equivalent.

(matrix coefficients of λG/N are N-invariant, while those of
λG are not)
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So if G is C ∗-simple, its amenable radical Rad(G ) (= largest
amenable normal subgroup) is trivial.



C ∗-simple groups
Suppose G is a countable discrete group.

Definition
G is said to be C ∗-simple, if every unitary representation of G ,
which is weakly contained in the regular representation λG is
weakly equivalent to λG .

Remarks:

So if G is C ∗-simple, its amenable radical Rad(G ) (= largest
amenable normal subgroup) is trivial.

OPEN PROBLEM: Does the converse hold ?



C ∗-simple groups

Examples of C ∗-simple groups:
The following groups (after possibly moding out the amenable
radical) are known to be C ∗-simple

I Non-abelian free groups (Powers 1974).

I Lattices in real semisimple algebraic groups
(Bekka-Cowling-de la Harpe 1994).

I Mapping class groups, outer automorphims of free groups
(Bridson - de la Harpe 2004).

I Relatively hyperbolic groups (Arzhantseva-Minasyan 2007)

I Linear groups (Poznansky 2008).

I Baumslag-Solitar groups (de la Harpe-Préaux 2011)

I Free Burnside groups of large odd exponent (Osin-Olshanskii
2014).
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It is known to be simple as an abstract group.
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C ∗-simple groups

Proofs were based on Powers’ original idea:

Powers’ lemma: Assume that ∀ε > 0 and for every finite set
F ⊂ G \ {1} one can find group elements g1, . . . , gk such that

‖λG (µx)‖ 6 ε,

for each x ∈ F , where

µx :=
1

k

k∑
1

δgixg−1
i
.

Then G is C ∗-simple.
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C ∗-simple groups
Powers’ lemma: Assume that ∀ε > 0 and for every finite set
F ⊂ G \ {1} one can find group elements g1, . . . , gk such that

‖λG (µx)‖ 6 ε,

for each x ∈ F , where

µx :=
1

2k

k∑
1

δgixg−1
i

+ δgix−1g−1
i
.

Then G is C ∗-simple.

For example: if the gi ’s can be chosen so that g1xg
−1
1 , . . . , gkxg

−1
k

generate a free subgroup, then (Kesten 1959),

‖λG (µx)‖ =

√
2k − 1

k
6 1/

√
2k .



C ∗-simple groups
Powers’ lemma: Assume that ∀ε > 0 and for every finite set
F ⊂ G \ {1} one can find group elements g1, . . . , gk such that

‖λG (µx)‖ 6 ε,

for each x ∈ F , where

µx :=
1

2k

k∑
1

δgixg−1
i

+ δgix−1g−1
i
.

Then G is C ∗-simple.

For linear groups one can use Random Matrix Products to achieve
this (see Aoun’s thesis) : set gi = S i

n, where S1
n , ...,S

k
n are

independent random matrix products ; then ‖µx‖ 6 2/
√
k with

probability → 1 as n→∞.
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The Furstenberg boundary

Recently Merhdad Kalantar and Matt Kennedy found a new
criterion for C ∗-simplicity. It is phrased in dynamical terms.



The Furstenberg boundary

Furstenberg (1973) introduced the following notion:

Definition (G -boundary)

A compact Hausdorff G -space X is called a G -boundary, if it
is:

I minimal (every G -orbit is dense), and

I strongly proximal (every probability measure on X admits
a Dirac mass in the closure of its G -orbit).
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A compact Hausdorff G -space X is called a G -boundary, if it
is:

I minimal (every G -orbit is dense), and

I strongly proximal (every probability measure on X admits
a Dirac mass in the closure of its G -orbit).

He showed that there is a (unique up to isomorphism)
universal boundary associated to every locally compact group,
that is a G -boundary B(G ) = ∂FG , such that every
G -boundary is an equivariant image of ∂FG .
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The Furstenberg boundary

Furstenberg (1973) introduced the following notion:

Definition (G -boundary)

A compact Hausdorff G -space X is called a G -boundary, if it
is:

I minimal (every G -orbit is dense), and

I strongly proximal (every probability measure on X admits
a Dirac mass in the closure of its G -orbit).

This universal boundary is now called the Furstenberg
boundary of the group G .

For example if G is a real semisimple Lie group, ∂FG = G/P,
where P is a minimal parabolic subgroup. This notion was
important in Margulis’ proof of his super-rigidity theorem.



The Furstenberg boundary

If G is amenable, then ∂FG is trivial. In fact the kernel of the
G -action on ∂FG is precisely the amenable radical (Furman 2003).

If G is discrete and not amenable, ∂FG is huge (not metrizable).

Theorem (Kalantar-Kennedy 2014)

If G is discrete, then the Furstenberg boundary ∂FG is an
extremally disconnected space (i.e. open sets have open closures).

idea:
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If G is amenable, then ∂FG is trivial. In fact the kernel of the
G -action on ∂FG is precisely the amenable radical (Furman 2003).

If G is discrete and not amenable, ∂FG is huge (not metrizable).

Theorem (Kalantar-Kennedy 2014)

If G is discrete, then the Furstenberg boundary ∂FG is an
extremally disconnected space (i.e. open sets have open closures).

idea:

• Andrew Gleason (1958) showed that extremally
disconnected compact Hausdorff spaces are precisely the
projective objects among compact Hausdorff spaces (recall: X
is projective if for given Y � Z , any map to Z lifts to Y .)



The Furstenberg boundary

If G is amenable, then ∂FG is trivial. In fact the kernel of the
G -action on ∂FG is precisely the amenable radical (Furman 2003).

If G is discrete and not amenable, ∂FG is huge (not metrizable).

Theorem (Kalantar-Kennedy 2014)

If G is discrete, then the Furstenberg boundary ∂FG is an
extremally disconnected space (i.e. open sets have open closures).

idea:

• By duality X is projective iff C (X ) is injective as a
C ∗-algebra.



The Furstenberg boundary

If G is amenable, then ∂FG is trivial. In fact the kernel of the
G -action on ∂FG is precisely the amenable radical (Furman 2003).

If G is discrete and not amenable, ∂FG is huge (not metrizable).

Theorem (Kalantar-Kennedy 2014)

If G is discrete, then the Furstenberg boundary ∂FG is an
extremally disconnected space (i.e. open sets have open closures).

idea:

• The boundary map ∂FG → P(βG ) induces a G -equivariant
retraction r := `∞(G ) = C (βG )� C (∂FG ). So injectivity of
C (∂FG ) follows from that of `∞G .



The Furstenberg boundary

Corollary

If x ∈ ∂FG, then StabG (x) is amenable.

idea: the composition ex ◦ r is a StabG (x)-invariant positive functional.

Question: is StabG (x) trivial ?

Theorem (Kalantar-Kennedy, 2014)

G is C ∗-simple if and only if it acts freely on ∂FG.

Remarks:
• In an extremally disconnected compact Hausdorff G -space, fix
points sets Fix(g), g ∈ G , are clopen (= closed and open).

• So G acts freely on ∂FG if and only if it acts topologically freely
(i.e. Fix(g) has empty interior).

• Consequence: If there exists some G -boundary on which G acts
topologically freely, then G is C ∗-simple.
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• So G acts freely on ∂FG if and only if it acts topologically freely
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topologically freely, then G is C ∗-simple.
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• Linear groups without amenable radical satisfy the above
criterion.
• So do groups with a positive `2-Betti number (Thom,
Bader-Furman-Sauer), groups with non-vanishing bounded
cohomology.
• We recover this way essentially all previously known cases.
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No amenable normalish subgroup criterion

Definition (Normalish subgroup)

A subgroup H 6 G is said to be normalish, if ∩g∈FgHg−1 is
infinite for every finite subset F ⊂ G .

Theorem (BKKO 2014)

If G has no normal finite subgroup and no amenable normalish
subgroup, then G is C ∗-simple.

Point is: if G does not act topologically freely on ∂FG , then
StabG (x) is amenable and normalish.



Connes-Sullivan property
B.+ Ozawa (2015) : In fact linear groups, and groups with non
trivial bounded cohomology, verify a stronger property:

Definition: Say that a discrete group G has the Connes-Sullivan
property (CS) if for every unitary representation π of G , if

π ≺ λ⇒ π is discrete.

i.e. if gn ∈ G s.t. π(gn)→ 1 in strong operator topology (i.e.
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property (CS) if for every unitary representation π of G , if

π ≺ λ⇒ π is discrete.

i.e. if gn ∈ G s.t. π(gn)→ 1 in strong operator topology (i.e.
π(gn)v → v for each v), then gn ∈ Rad(G ) eventually.

Observation: If G has (CS), then G/Rad(G ) has no amenable
normalish subgroup, so it is C ∗-simple.

indeed: • if H is normalish, then given an arbitrary finite set
F ⊂ G/H, there is a non trivial element in G fixing each x ∈ F .

• if H is amenable then λG/H ≺ λG .
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Connes-Sullivan property
B.+ Ozawa (2015) : In fact linear groups, and groups with non
trivial bounded cohomology, verify a stronger property:

Definition: Say that a discrete group G has the Connes-Sullivan
property (CS) if for every unitary representation π of G , if

π ≺ λ⇒ π is discrete.

i.e. if gn ∈ G s.t. π(gn)→ 1 in strong operator topology (i.e.
π(gn)v → v for each v), then gn ∈ Rad(G ) eventually.

why (CS) ? Connes and Sullivan had conjectured in the early
80’s that a countable dense subgroup G of connected Lie
group G acts amenably on it iff the Lie group G is solvable.
Proof of (CS) for linear groups is a consequence of the strong Tits

alternative (Breuillard-Gelander 2006).



Further consequences

Exploiting the KK dynamical criterion, we further show:

I if G has only countably many amenable subgroups and no
amenable radical, then G is C ∗-simple.

I this applies to Tarski monster groups, or free Burnside groups.

I we get that C ∗-simplicity is invariant under group extensions.
In fact if N C G , then G is C ∗-simple if and only if N and
CG (N) are.

I we get that if G is C ∗-simple and X is a G -boundary, which is
not topologically free, then StabG (x) is non-amenable.
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Unique trace
A trace on a C ∗-algebra A is a linear functional τ : A→ C such
that
I τ(1) = 1,
I τ(xx∗) ∈ [0,+∞), and
I τ(ab) = τ(ba).

For example if A := C ∗λ(G ) ⊂ B(`2(G )) is the reduced C ∗-algebra
of the discrete group G , then setting

τ(λg ) = 1 iff g = 1,

we obtain a trace on C ∗λ(G ) called the canonical trace.
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Question: How to construct traces on C ∗λ(G ) ?
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e.g. if G is finite, setting τ(λg ) = 1 for all g gives rise to a
non-canonical trace. If G is amenable, similarly one can build
non-canonical traces.



Unique trace
A trace on a C ∗-algebra A is a linear functional τ : A→ C such
that
I τ(1) = 1,
I τ(xx∗) ∈ [0,+∞), and
I τ(ab) = τ(ba).

For example if A := C ∗λ(G ) ⊂ B(`2(G )) is the reduced C ∗-algebra
of the discrete group G , then setting

τ(λg ) = 1 iff g = 1,

we obtain a trace on C ∗λ(G ) called the canonical trace.

Powers’ lemma also yields uniqueness of traces for groups satisfying
the assumptions of Powers’ lemma.

Open problem: are being C ∗-simple and have unique trace
equivalent ?



Unique trace

Theorem (BKKO 2015)

Every trace concentrates on the amenable radical. In particular, if
Rad(G ) = 1, then the canonical trace is the only trace.

idea: Use injectivity of C (∂FG ) to extend a trace to a positive G -map of

the cross product C (∂FG )n G to C (∂FG ), then exploit the fact that no

g /∈ Rad(G ) acts trivially on ∂FG .

Application to Invariant Random Subgroups:

Theorem (Bader-Duchesne-Lecureux)

If µ is an ergodic IRS on a locally compact group G, then µ is
concentrated on the amenable radical, i.e. H 6 Rad(G ) for µ
almost every H.
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Every trace concentrates on the amenable radical. In particular, if
Rad(G ) = 1, then the canonical trace is the only trace.

idea: Use injectivity of C (∂FG ) to extend a trace to a positive G -map of

the cross product C (∂FG )n G to C (∂FG ), then exploit the fact that no
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Application to Invariant Random Subgroups:

Theorem (Bader-Duchesne-Lecureux)

If µ is an ergodic IRS on a locally compact group G, then µ is
concentrated on the amenable radical, i.e. H 6 Rad(G ) for µ
almost every H.

We get a new proof in the discrete case as a consequence of unique
trace:



Unique trace

Theorem (BKKO 2015)

Every trace concentrates on the amenable radical. In particular, if
Rad(G ) = 1, then the canonical trace is the only trace.

idea: Use injectivity of C (∂FG ) to extend a trace to a positive G -map of

the cross product C (∂FG )n G to C (∂FG ), then exploit the fact that no

g /∈ Rad(G ) acts trivially on ∂FG .

Application to Invariant Random Subgroups:

Theorem (Bader-Duchesne-Lecureux)

If µ is an ergodic IRS on a locally compact group G, then µ is
concentrated on the amenable radical, i.e. H 6 Rad(G ) for µ
almost every H.

idea: (Tucker-Drob) setting τ(λg ) := Proba(g ∈ H) we obtain a
trace on C ∗λ(G )...



Thompson groups
Thompson’s group F is the subgroup of piecewise linear

homeomorphisms of [0, 1] whose non-differentiable breakpoints are dyadic

rationals and slopes are powers of 2.

Thompson’s group T is the subgroup of Homeo(S1) generated by
F and the translation x 7→ x + 1

2 in S1 ' R/Z.

F is the stabilizer of 0 in T , F = StabT (0). T is an abstractly
simple, finitely presented, group. The circle S1 ' R/Z is a
boundary for T .

But the circle is not topologically free !
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Thompson groups
Thompson’s group F is the subgroup of piecewise linear

homeomorphisms of [0, 1] whose non-differentiable breakpoints are dyadic

rationals and slopes are powers of 2.

Thompson’s group T is the subgroup of Homeo(S1) generated by
F and the translation x 7→ x + 1

2 in S1 ' R/Z.

F is the stabilizer of 0 in T , F = StabT (0). T is an abstractly
simple, finitely presented, group. The circle S1 ' R/Z is a
boundary for T .

But the circle is not topologically free !

In particular, the two statements:

1. Every discrete group without amenable radical is C ∗-simple.

2. Thompson’s group F is amenable.

are incompatible!



Haagerup and Olesen observation

Suppose G is a discrete countable group, and H 6 G a subgroup.

Suppose that there are a, b in G \ {1} with disjoint support when
acting on G/H. That is : ∀x ∈ G/H, either ax = x or bx = x .

Then (1− a)(1− b) = 0 when acting by convolution on `2(G/H)
indeed: f (x) + f (b−1a−1x) = f (a−1x) + f (b−1x) for all x ∈ G/H.

Consequence: if H is amenable, then G is not C ∗-simple !
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Haagerup and Olesen observation

Suppose G is a discrete countable group, and H 6 G a subgroup.

Suppose that there are a, b in G \ {1} with disjoint support when
acting on G/H. That is : ∀x ∈ G/H, either ax = x or bx = x .

Then (1− a)(1− b) = 0 when acting by convolution on `2(G/H)
indeed: f (x) + f (b−1a−1x) = f (a−1x) + f (b−1x) for all x ∈ G/H.

Consequence: if H is amenable, then G is not C ∗-simple !

This applies to G = T and H = F the Thompson groups...

PROBLEM: Find pairs G ,H as above with Rad(G ) = 1.

→ you will get a non C ∗-simple group with trivial amenable radical...
[Added July 1st: Adrien Le Boudec has just shown that his new construction of Burger-Mozes-type groups with

singularities solve this problem (as well as act non topologically freely on a boundary with amenable stabilizers), and

thus give rise to the first examples of non C∗-simple discrete groups without amenable radical.]


