Ziggurats and rotation numbers

Danny Calegari

Monday June 29, 2015

Spectra of matrices

Let's start with a finitely generated group Γ (we will focus mostly on the case $\Gamma = F_2$, the free group on 2 generators).

An irreducible representation

$$\rho: \Gamma \to \mathsf{SU}(n)$$

is determined up to conjugacy by the spectra $\sigma(\rho(g))$ of (enough) $g \in \Gamma$.

Horn Problem: If $A, B \in SU(n)$ and we know the spectra $\sigma(A)$ and $\sigma(B)$, what can we say about the spectrum $\sigma(AB)$?

Answer (Agnihotri-Woodward, Belkale): the set of points of the form

 $(\log(\sigma(A)), \log(\sigma(B)), \log(\sigma(AB))) \in i\mathbb{R}^{3n}$

is an (explicitly given) convex polytope.

Homeomorphisms of S^1

We denote by Homeo⁺(S^1) the group of orientation-preserving homeomorphisms of the circle. This is a topological group, with the compact-open topology.

The dynamics of an element is often indicated informally by a picture.

elements of Homeo⁺(S^1)

Rotation number

The rotation number of an element of Homeo⁺(S^1) plays the role of the *spectrum* for an element of SU(n).

The circle is (universally) covered by the line and there is a central extension

$$\mathbb{Z}
ightarrow \mathsf{Homeo}^+(S^1)^\sim
ightarrow \mathsf{Homeo}^+(S^1)$$

where Homeo⁺ $(S^1)^{\sim}$ consists of homeomorphisms of \mathbb{R} commuting with integer translation.

For $\alpha \in \mathsf{Homeo}^+(S^1)^\sim$, define

Taking values mod \mathbb{Z} gives rot : Homeo⁺(S^1) $\rightarrow S^1$.

Properties of rotation number:

- 1. $rot(\alpha) \in \mathbb{Q}/\mathbb{Z}$ iff α has a periodic point.
- 2. If Γ is *amenable*, and $\rho: \Gamma \to \text{Homeo}^+(S^1)$ then

$$\mathsf{rot} \circ \rho: \mathsf{\Gamma} \to S^1$$

is a homomorphism.

3. rot is a complete invariant of semi-conjugacy.

Warning: rot and rot^{\sim} are *not* homomorphisms if Γ is not amenable.

Abelian groups are amenable. Solvable groups are amenable. Groups of subexponential growth are amenable.

Arnol'd tongues

When $\Gamma \subset \text{Homeo}^+(S^1)$ is amenable, rot is a *homomorphism*, and Γ is semiconjugate to a group of (rigid) rotations. This is *linear*, in the sense that

$$rot(gh) = rot(g) + rot(h)$$

When we perturb a linear action by adding noise, *phase locking* makes periodic orbits appear, and rotation numbers want to be rational.

picture credit: http://www.oberlin.edu/physics/catalog/demonstrations/waves/synchronizedmetronomes.html

Let $F(r)(x) := x + r \mod \mathbb{Z}$, a rigid rotation. We perturb by adding *nonlinear noise*:

$$F(r,n)(x) := x + r + n\sin(2\pi x)$$

As we add more noise, the homeomorphisms get stable periodic orbits. Lower period orbits are the most likely.

In this graph, r is the horizontal axis, n is the vertical axis. Rational rotation number is in white.

Topological noise

Let's consider a context where the nonlinearity (the "noise") comes from the *nonamenability* of Γ .

If $a, b \in$ Homeo $+ (S^1)^{\sim}$ are rigid rotations (translations) by $r, s \in \mathbb{R}$, then

$$\operatorname{rot}^{\sim}(ab) = \operatorname{rot}^{\sim}(a) + \operatorname{rot}^{\sim}(b) = r + s$$

Basic Question: How big can $rot^{\sim}(ab) - rot^{\sim}(a) - rot^{\sim}(b)$ be for *arbitrary* homeomorphisms?

Fix $F_2:=\langle a,b
angle$ free of rank 2. Consider all homomorphisms $ho:F_2 o$ Homeo $^+(S^1)^\sim$

Given $w \in F_2$, and $r, s \in \mathbb{R}$, define

$$R(w; r, s) := \sup \{ \operatorname{rot}^{\sim}(\rho(w)) \mid \operatorname{rot}^{\sim}(\rho(a)) = r, \ \operatorname{rot}^{\sim}(\rho(b)) = s \}$$

If $h_a(w)$ and $h_b(w)$ are the signed number of a's and b's in w, then

$$R(w; r, s) \geq h_a(w)r + h_b(w)s$$

and $R(w; r, s) - h_a(w)r - h_b(w)s$ measures the "noise" associated to w.

Elementary properties of $R(w, \cdot, \cdot)$:

- 1. $R(w; \cdot, \cdot)$ is lower semicontinuous.
- 2. $R(w; r + n, s + m) = R(w; r, s) + nh_a(w) + mh_b(w)$ for $n, m \in \mathbb{Z}$.
- 3. $R(w; r, s) = rot^{\sim}(\rho(w))$ is *achieved* for some ρ .

R is quite complicated for general w, and I don't know an algorithm to compute it exactly.

Positive words

A word w is *positive* if it contains a's and b's but no a^{-1} or b^{-1} .

Theorem (Rationality): If w is positive and r or s are rational, R(w; r, s) is rational with denominator \leq the minimum of the denominators of r and s.

Theorem (Stability): If w is positive and r or s are rational, $R(w; \cdot, \cdot)$ is locally constant on $[r, r + \epsilon) \times [s, s + \epsilon)$ for some positive ϵ . If R(w, r, s) = p/q then $\epsilon \leq 1/q$.

In other words, there is an open dense subset of the r-s plane where $R(w; \cdot, \cdot)$ is locally constant and takes values in \mathbb{Q} . This is the topological analog of Arnol'd tongues.

Example: The ziggurat (i.e. the graph of R) for w = ab.

Application: Foliations of Seifert-fibered spaces

A Seifert fibered space M is a 3-manifold foliated by circles. We can think of M as a circle "bundle" over a surface S with finitely many special fibers.

If S has positive genus, or there are at least 4 special fibers, M always has a taut foliation.

If S is a sphere and there are 3 special fibers, any foliation "comes from" a representation

$$ho:\pi_1(S-3 ext{ points})
ightarrow \mathsf{Homeo}^+(S^1)$$

Extending the foliation over the singular fibers depends on the *rotation* number of the representation on the boundary elements (i.e. on a, b, ab).

Homological data (the *Euler class*) gives lifts from Homeo⁺(S^1) to Homeo⁺(S^1)[~]. So classifying which spaces admit taut foliations is equivalent to computing R(ab; r, s).

Theorem (Naimi): (Conjectured by Jankins-Neumann)

$$R(ab; r, s) = \sup\left(rac{p_1+p_2+1}{q} \mid rac{p_1}{q} \leq r, \ rac{p_2}{q} \leq s
ight)$$

We give a new (and much shorter) proof.

Example: The ziggurat for w = abaab.

Example: The ziggurat for w = abaabaaab.

Example: The ziggurat for w = abbbabaaaabbabb.

Example: The "ziggurat" for w = abAB.

The Slippery Conjecture

Definition: $R(w; r-, s-) = \lim_{r' \to r, s' \to s} R(w; r', s')$

Lemma: $R(w; r-, s-) = \sup\{\operatorname{rot}^{\sim}(w) \mid a = R_r, b = R_s^{\phi}\}$ where $R_t : x \to x + t$ and superscript denotes conjugation.

Definition: (r, s) is *slippery* if R(w; r', s') < R(w; r-, s-) for all r', s' strictly less than r, s.

(r, s) not slippery implies $R(w; r-, s-) \in \mathbb{Q}$ and can be computed.

Slippery Conjecture: If (r, s) is slippery, then

$$R(w; r-, s-) = h_a(w)r + h_b(w)s$$

i.e. the "optimal" representation is *linear*.

Example: (1, t) and (t, 1) are slippery for every positive w. (1/2, 1/2) is slippery for *abaab*, *abaababb* and *abaabaaaabb*.

Intuition for Slippery Conjecture.

Nonlinearity \rightarrow topological "noise" \rightarrow small denominators.

(r, s) slippery $\rightarrow R(w; r', s')$ has big denominators.

Big denominators \rightarrow "almost" linearity.

Linearity \rightarrow rot $^{\sim}$ is a homomorphism:

$$\operatorname{rot}^{\sim}(w) = h_a(w)\operatorname{rot}^{\sim}(a) + h_b(w)\operatorname{rot}^{\sim}(b)$$

Refined Slippery Conjecture: Suppose $w = a^{\alpha_1} b^{\beta_1} \cdots b^{\beta_m}$ is positive. If R(w; r, s) = p/q then there is an inequality

$$R(w; r, s) - h_a(w)r - h_b(w)s \leq m/q$$

Lots of experimental evidence:

Fringes

(r, 1) is slippery for any positive w. Moreover:

Lemma: For $r \in \mathbb{Q}$ there is a least $s \in [0,1) \cap \mathbb{Q}$ so that

$$R(w; r, t) = h_a(w)r + h_b(w)$$

for all $t \in [s, 1)$.

1 - s is the (left) *fringe length* at r, and denoted $fr_w(r)$.

left/right fringes for abaab; picture credit Subhadip Chowdhury

As $t \to 1$, the dynamics of F_2 becomes close to linear, so there is a good *perturbative* model. Fringes are the maximal regions where this perturbative model is valid.

Computing R(w; r, s) in general takes time exponential in the denominators of r and s. However:

Theorem (S. Chowdhury): There is an *explicit* formula for fr_w.

$$\mathsf{fr}_w(p/q) = rac{1}{\sigma_w(g)q}$$

where $g := \gcd(q, h_a(w))$. Furthermore, $\sigma(q)g \in \mathbb{Z}$.

Chowdhury's formula shows that fr is *periodic on every scale*, and exhibits (partial) *piecewise integral projective linear symmetries*.

Similar structure in the *ab*-ziggurat was discovered by A. Gordenko.

projective similarity in the ab-ziggurat; picture credit Anna Gordenko

Reference: D. Calegari and A. Walker, *Ziggurats and rotation numbers*; J. Mod. Dyn. **5** (2011), no. 4, 711–746

Reference: S. Chowdhury, *Ziggurat fringes are self-similar*, preprint arXiv 1503.04227

Reference: A. Gordenko, *Self-similarity of Jankins-Neumann ziggurat*; preprint arXiv 1503.03114

Reference: M. Jankins and W. Neumann, *Rotation numbers of products of circle homeomorphisms*; Math. Ann. **271** (1985), no. 3, 381–400

Reference: R. Naimi, *Foliations transverse to fibers of Seifert manifolds*, Comm. Math. Helv. **69** (1994), no. 1, 155–162