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Spectra of matrices

Let’s start with a finitely generated group Γ (we will focus mostly
on the case Γ = F2, the free group on 2 generators).

An irreducible representation

ρ : Γ→ SU(n)

is determined up to conjugacy by the spectra σ(ρ(g)) of (enough)
g ∈ Γ.



Horn Problem: If A,B ∈ SU(n) and we know the spectra σ(A)
and σ(B), what can we say about the spectrum σ(AB)?

Answer (Agnihotri-Woodward, Belkale): the set of points of
the form

(log(σ(A)), log(σ(B)), log(σ(AB))) ∈ iR3n

is an (explicitly given) convex polytope.



Homeomorphisms of S1

We denote by Homeo+(S1) the group of orientation-preserving
homeomorphisms of the circle. This is a topological group, with
the compact-open topology.

The dynamics of an element is often indicated informally by a
picture.

elements of Homeo+(S1)



Rotation number

The rotation number of an element of Homeo+(S1) plays the role
of the spectrum for an element of SU(n).

The circle is (universally) covered by the line and there is a central
extension

Z→ Homeo+(S1)∼ → Homeo+(S1)

where Homeo+(S1)∼ consists of homeomorphisms of R
commuting with integer translation.



For α ∈ Homeo+(S1)∼, define

rot∼(α) = lim
n→∞

αn(0)

n
∈ R

Taking values mod Z gives rot : Homeo+(S1)→ S1.



Properties of rotation number:

1. rot(α) ∈ Q/Z iff α has a periodic point.

2. If Γ is amenable, and ρ : Γ→ Homeo+(S1) then

rot ◦ ρ : Γ→ S1

is a homomorphism.

3. rot is a complete invariant of semi-conjugacy.

Warning: rot and rot∼ are not homomorphisms if Γ is not
amenable.

Abelian groups are amenable. Solvable groups are amenable. Groups of subexponential growth are amenable.



Arnol’d tongues

When Γ ⊂ Homeo+(S1) is amenable, rot is a homomorphism, and
Γ is semiconjugate to a group of (rigid) rotations. This is linear, in
the sense that

rot(gh) = rot(g) + rot(h)

When we perturb a linear action by adding noise, phase locking
makes periodic orbits appear, and rotation numbers want to be
rational.

−→

picture credit: http://www.oberlin.edu/physics/catalog/demonstrations/waves/synchronizedmetronomes.html



Let F (r)(x) := x + r mod Z, a rigid rotation. We perturb by
adding nonlinear noise:

F (r , n)(x) := x + r + n sin(2πx)

As we add more noise, the homeomorphisms get stable periodic
orbits. Lower period orbits are the most likely.

In this graph, r is the horizontal axis, n is the vertical axis.
Rational rotation number is in white.
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For each positive fixed b, the map a → rot(Va,b) is continuous and monotone,
but is locally constant on countably many open intervals, one for each ratio-
nal number. The interior in the a–b plane of the preimage of a rational number
p/q is called an Arnol′d tongue, which gets narrower as b → 0, limiting on the
point (p/q, 0). The bigger the denominator q is, the thinner the “tongue” and the
sharper it approaches the a-axis; see Fig. 2.4. Also see § 4.11 and Theorem 4.58.

FIG. 2.4. Arnol′d tongues for the family x → x + a + b sin(2πx)

We say that two elements α,α′ ∈ Homeo+(S1) are monotone equivalent if
they define monotone equivalent actions of Z on S1 (recall Definition 2.21). It
is clear that monotone equivalent α,α′ have the same rotation number. The fol-
lowing converse was essentially known to Poincaré:

Theorem 2.77. (Poincaré) rot is a complete invariant of the monotone equivalence
class of α.

We will prove a generalization of this theorem, due to Ghys, below.
For a group G, consider the short exact sequence of cochains:

0 → C∗
b (G; Z) → C∗

b (G; R) → C∗(G; S1) → 0

This gives a long exact sequence of cohomology groups. For any group G, a 1-
cocycle is a homomorphism to R; in particular, it is either unbounded or trivial.
It follows that H1

b (G; R) = 0. So the long exact sequence takes the form

0 → H1(G; S1) → H2
b (G; Z) → H2

b (G; R) → H2(G; S1) → · · ·

For any amenable group G, we have H∗
b (G; R) = 0, by Theorem 2.60. So for

G = Z, we get H2
b (Z; R) = 0 and S1 = H1(Z; S1) ∼= H2

b (Z, Z). Any element

α ∈ Homeo+(S1) determines an action of Z on S1, by sending the generator of
Z to α. The cocycle e associated to this action therefore determines an element
in H1(Z, S1) = S1 which is precisely the rotation number of α.



Topological noise

Let’s consider a context where the nonlinearity (the “noise”)
comes from the nonamenability of Γ.

If a, b ∈ Homeo + (S1)∼ are rigid rotations (translations) by
r , s ∈ R, then

rot∼(ab) = rot∼(a) + rot∼(b) = r + s

Basic Question: How big can rot∼(ab)− rot∼(a)− rot∼(b) be for
arbitrary homeomorphisms?



Fix F2 := 〈a, b〉 free of rank 2. Consider all homomorphisms

ρ : F2 → Homeo+(S1)∼

Given w ∈ F2, and r , s ∈ R, define

R(w ; r , s) := sup {rot∼(ρ(w)) | rot∼(ρ(a)) = r , rot∼(ρ(b)) = s}

If ha(w) and hb(w) are the signed number of a’s and b’s in w , then

R(w ; r , s) ≥ ha(w)r + hb(w)s

and R(w ; r , s)− ha(w)r − hb(w)s measures the “noise” associated
to w .



Elementary properties of R(w , ·, ·):

1. R(w ; ·, ·) is lower semicontinuous.

2. R(w ; r + n, s + m) = R(w ; r , s) + nha(w) + mhb(w) for
n,m ∈ Z.

3. R(w ; r , s) = rot∼(ρ(w)) is achieved for some ρ.

R is quite complicated for general w , and I don’t know an
algorithm to compute it exactly.



Positive words

A word w is positive if it contains a’s and b’s but no a−1 or b−1.

Theorem (Rationality): If w is positive and r or s are rational,
R(w ; r , s) is rational with denominator ≤ the minimum of the
denominators of r and s.

Theorem (Stability): If w is positive and r or s are rational,
R(w ; ·, ·) is locally constant on [r , r + ε)× [s, s + ε) for some
positive ε. If R(w , r , s) = p/q then ε ≤ 1/q.

In other words, there is an open dense subset of the r–s plane
where R(w ; ·, ·) is locally constant and takes values in Q. This is
the topological analog of Arnol’d tongues.



Example: The ziggurat (i.e. the graph of R) for w = ab.



Application: Foliations of Seifert-fibered spaces

A Seifert fibered space M is a 3-manifold foliated by circles. We
can think of M as a circle “bundle” over a surface S with finitely
many special fibers.

If S has positive genus, or there are at least 4 special fibers, M
always has a taut foliation.

If S is a sphere and there are 3 special fibers, any foliation “comes
from” a representation

ρ : π1(S − 3 points)→ Homeo+(S1)



Extending the foliation over the singular fibers depends on the
rotation number of the representation on the boundary elements
(i.e. on a, b, ab).

Homological data (the Euler class) gives lifts from Homeo+(S1) to
Homeo+(S1)∼. So classifying which spaces admit taut foliations is
equivalent to computing R(ab; r , s).

Theorem (Naimi): (Conjectured by Jankins-Neumann)

R(ab; r , s) = sup

(
p1 + p2 + 1

q
| p1

q
≤ r ,

p2

q
≤ s

)

We give a new (and much shorter) proof.



Example: The ziggurat for w = abaab.



Example: The ziggurat for w = abaabaaab.



Example: The ziggurat for w = abbbabaaaabbabb.



Example: The “ziggurat” for w = abAB.



The Slippery Conjecture

Definition: R(w ; r−, s−) = limr ′→r ,s′→s R(w ; r ′, s ′)

Lemma: R(w ; r−, s−) = sup{rot∼(w) | a = Rr , b = Rφ
s } where

Rt : x → x + t and superscript denotes conjugation.

Definition: (r , s) is slippery if R(w ; r ′, s ′) < R(w ; r−, s−) for all
r ′, s ′ strictly less than r , s.

(r , s) not slippery implies R(w ; r−, s−) ∈ Q and can be computed.



Slippery Conjecture: If (r , s) is slippery, then

R(w ; r−, s−) = ha(w)r + hb(w)s

i.e. the “optimal” representation is linear.



Example: (1, t) and (t, 1) are slippery for every positive w .
(1/2, 1/2) is slippery for abaab, abaababb and abaabaaaabb.



Intuition for Slippery Conjecture.

Nonlinearity → topological “noise” → small denominators.

(r , s) slippery → R(w ; r ′, s ′) has big denominators.

Big denominators → “almost” linearity.

Linearity → rot∼ is a homomorphism:

rot∼(w) = ha(w)rot∼(a) + hb(w)rot∼(b)



Refined Slippery Conjecture: Suppose w = aα1bβ1 · · · bβm is
positive. If R(w ; r , s) = p/q then there is an inequality

R(w ; r , s)− ha(w)r − hb(w)s ≤ m/q

Lots of experimental evidence:

Plot of q versus R(w, r, s)− ha(w)r − hb(w)s for w = abaab and w = abaabbabbbababaab



Fringes

(r , 1) is slippery for any positive w . Moreover:

Lemma: For r ∈ Q there is a least s ∈ [0, 1) ∩Q so that

R(w ; r , t) = ha(w)r + hb(w)

for all t ∈ [s, 1).

1− s is the (left) fringe length at r , and denoted frw (r).



left/right fringes for abaab; picture credit Subhadip Chowdhury



As t → 1, the dynamics of F2 becomes close to linear, so there is a
good perturbative model. Fringes are the maximal regions where
this perturbative model is valid.

Computing R(w ; r , s) in general takes time exponential in the
denominators of r and s. However:

Theorem (S. Chowdhury): There is an explicit formula for frw .

frw (p/q) =
1

σw (g)q

where g := gcd(q, ha(w)). Furthermore, σ(q)g ∈ Z.



Chowdhury’s formula shows that fr is periodic on every scale, and
exhibits (partial) piecewise integral projective linear symmetries.

Similar structure in the ab-ziggurat was discovered by A. Gordenko.

projective similarity in the ab-ziggurat; picture credit Anna Gordenko
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