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A foliation F is a decomposition of a 3-manifold M into surfaces
(leaves) which are locally arranged in a product. A foliation is a
kind of clothing, cut from a stripy fabric.
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Example: A surface bundle over a circle is foliated by surface
fibers.

Example: A solid torus can be filled up by planes (“Reeb
component”); with enough Reeb components, any 3-manifold
admits a foliation. BASIC CONSTRUCTIONS AND EXAMPLES 145

FIG. 4.2. A Reeb component with the top sliced off

many parallel copies of ∂N of the form ∂N× 1
n as n ranges over the positive in-

tegers. Then S is transverse to each ∂N× 1
n , and we can take an oriented sum of

the result (see Construction 5.3 for more details). This produces a noncompact
surface S′ which agrees with S outside E, and which “spirals” around ∂N. This
operation is often the first step in extending a foliation F of N, tangent to ∂N, to
a foliation of all of M.

Example 4.9. (spinning) Spinning is closely related to the operation of spiralling
a leaf. Let M be a 3-manifold with boundary a torus T, and let F be a foliation
of M which is transverse to T. Suppose further that we can choose a product
structure on T = S1 × S1 in such a way that leaves of F|T are transverse to the
point× S1 factors. Such a product structure will not always exist; the obstruc-
tion is that F|T might contain Reeb annuli. If there are no such Reeb annuli,
the foliation F|T has the structure of a foliated circle bundle over S1, which is
determined up to conjugacy by the monodromy α ∈ Homeo+(S1).

Let N1(T) be a tubular neighborhood of T with the structure of a product

N1(T) = S1 × S1 × [0, 1]

so that T = S1 × S1 × 0. Let φ1 : N1(T) → N1(T) be the homeomorphism,
fixed on the boundary, which performs a Dehn twist in each annulus point×
S1 × [0, 1]. This operation takes the leaves of F and wraps them once around T.
For each integer n let Nn(T) be the tubular neighborhood

Nn(T) = S1 × S1 × [0, 1/n]

and let φn : Nn(T) → Nn(T) be a homeomorphism defined analogously to
φ1. Observe that the infinite composition φ = · · ·φ3φ2φ1 is well-defined on



Proposition: The following are equivalent:

1. F admits a transverse circle which intersects every leaf;

2. F admits a transverse volume-preserving flow;

3. M admits a metric for which leaves of F are minimal surfaces.

If any (hence all) of these conditions hold, F is said to be taut.

For M hyperbolic, F is taut if and only if it has no Reeb
components.



Leaves of taut foliations are π1-injective, so M̃ is foliated by planes.

Leaf space L of F̃ is a simply-connected 1-manifold, but it is not
necessarily Hausdorff.
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points in L. The study of the action of π1(M) on L by the holonomy homomor-
phism falls into the domain of arboreal group theory. See [47] for an important
example of the kinds of results that may be obtained by such methods.

A co–orientation on F pulls back to a co–orientation on F̃ , and defines an
orientation on L. So the Hausdorff quotient should be thought of more as having
the structure of an oriented train track (i.e. there is a combing at the branch points
into positive and negative directions) than a tree.

Taut foliations can be classified in terms of the kind of branching exhibited by
the (Hausdorffified) leaf space L. If L is Hausdorff, equivalently if its Hausdorf-
fification does not branch at all, then of course it is homeomorphic to R. In this
case F is said to be R–covered. If L branches in only one direction (e.g. the posi-
tive direction), we say F has one sided branching, and otherwise we say F has two
sided branching. If F has one sided branching, then necessarily F is co–orientable.
In this paper we will concentrate on the case that F has two sided branching.
Analogous results in the case that F is R–covered or has one sided branching are
contained in [5] and [6] respectively. See figure 3 for an example of (part of) the
universal cover of a foliation with two–sided branching.

FIGURE 3. This foliation of a topological ball by planes exhibits
two–sided branching.

The orientation on L defines a partial order on L, as follows.

Definition 3.1.6. The canonical partial order on L is defined as follows. Let λ, µ be

leaves of F̃ If there is a positively oriented transversal to F̃ from λ to µ, then

µ > λ

Similarly, if there is a negatively oriented transversal, then λ > µ. Note that if
λ < µ and µ < λ then µ = λ, by theorem 3.1.4. If there is no transversal between µ
and λ, we say the leaves are incomparable.

Note that the co–orientation of F̃ lets us define unambiguously the positive and

negative sides of λ in M . Every leaf of F̃\λ is either on the positive or negative
side. Moreover, if µ > λ, then µ is on the positive side, and if µ < λ, then µ is on
the negative side, but not conversely. The reader should be careful to distinguish
between the two notions.



Example: New foliation from old by blowing up leaf and inserting
pocket (“Denjoying”).

Example: New foliation from old by branching over a transverse
circle.

Example: Finite depth foliations when H2(M) is nontrivial.



Universal circles

P a plane, Γ a collection of properly embedded rays in P.

Lemma: Suppose any two γ, δ ∈ Γ have γ ∩ δ compact. Then
there is a natural circular order on Γ.

Corollary: If G a group acts on P and preserves Γ, then G acts on
the circle.



Example: Let S be a surface, and γ ⊂ S an essential oriented
loop. Let γ′ embedded ray in S spiral around γ. Let P = S̃ and Γ
the set of lifts of γ′ to P.

When S is closed, hyperbolic, this recovers S1
∞(S̃).

Question: What does this give if S is a torus?



Theorem (Candel): Let F be taut, M hyperbolic. There is a
metric on M so that leaves of F are hyperbolic.

Corollary: Each leaf λ of F̃ has a natural circle at infinity S1
∞(λ).

Thus there is a circle bundle E → L whose fiber over λ is S1
∞(λ).

Basic Question: How to compare S1
∞(λ) and S1

∞(µ) for different
leaves µ, λ ∈ F̃?



ε-marker: a map
m : [0, 1]× R+ → M̃

such that

1. each m(p, ·) : R+ → M̃ is a quasigeodesic ray in some leaf of
F̃ ;

2. each m(·, p) : [0, 1]→ M̃ has length < ε.

Lemma: ε-markers are dense in S1
∞(λ) for all λ ∈ F̃ .Laminations and groups of homeomorphisms of the circle 27

Fig. 5.5. Lifts of a sawblade G̃ running along λ .

Taking the possible lifts of τ to M̃ gives us an equivariant family M

of markers in M̃. Now consider any λ ′ in Σ and some leaf λ̃ ′ in Σ̃ which
covers it. As noted above, λ ′ must intersect the transversal τ . Thus one of
the markers inM intersects λ̃ ′. So every leaf of Σ̃ intersects a marker.

5.6. Endpoints of markers

Consider the family M of markers coming from the lifts of τ above. Let
λ be any leaf of Σ̃ . Consider the collection of geodesic rays in λ which
are horizontal rays of markers of M . These rays originate from the inter-
sections of lifts of τ with λ . We want to show that the endpoints of these
rays are dense in S1∞(λ ). Equivalently, let G denote the set of all lifts of G̃
to M̃, and look at the intersections of G with λ . We need to show that the
endpoints of these quasigeodesic rays are dense in S1∞(λ ).
First, we’ll show there are infinitely many intersections of G with λ .

Since Σ is minimal, there is a uniform R such that for any point p in any
leaf of Σ , the disk in that leaf about p of radius R intersects τ . This is
because the function of leafwise distance to τ is upper semi-continuous on
Σ . Applying this to λ , we have that any point p ∈ λ is within R of a lift
of τ , and therefore within R of an intersection of G and λ . Thus, there are
infinitely many quasigeodesic rays γi contained in λ ∩G .
Next, we’ll show that any two distinct γi and γ j have all endpoints dis-

joint in S1∞(λ ) (in particular, Figure 5.5 depicts an impossible configura-
tion). Downstairs in M, choose a δ so that the leafwise δ -neighborhood of
G deformation retracts to G. Note that γi and γ j come from distinct lifts
of G̃ in G , as otherwise some lift of τ intersects λ twice. Lifting the δ -
neighborhood of G upstairs, we see that in λ the δ -neighborhoods of γi
and γ j are disjoint. By shrinking τ if necessary, we can make the uniform



Markers let us “stich together” nearby circles into a single universal
circle. The properties of this circle can be given axiomatically:

A universal circle S1
u for F is the following data

1. faithful representation ρu : π1(M)→ Homeo+(S1
u );

2. for λ ∈ F̃ a monotone map φλ : S1
u → S1

∞(λ);

3. if λ, µ ∈ F̃ are incomparable, φλ and φµ are constant on
intervals I , J with I ∪ J = S1

u .

Theorem (Thurston): Universal circles exist.

proofs written by Calegari-Dunfield; Fenley



Leftmost sections compare circles of comparable leaves:

Laminations and groups of homeomorphisms of the circle 35

Proof. For a fixed p in S1∞(µ), we will construct a series of approximations
to the leftmost section. Consider a finite set of markersM which intersects
every leaf S1∞(ν). Consider paths γ : [0,1] → C which are almost sections
in the sense that the composition of γ and the projection [0,1] → I is a
monotone surjection. It makes sense to say such a path is admissible. De-
fine τM to be the leftmost admissible path in this sense. Explicitly, τM is
constructed by starting at p, heading left until we hit a marker m ∈ M , go-
ing up along m until it ends, then left again until we hit a marker, etc. See
Figure 6.13

p

C

Fig. 6.13. An approximate leftmost section τM .

Note that if we add additional elements to M , the intersection of τM
with any fixed S1∞(ν) moves to the right. The leftmost section τ to the full
set of markers is essentially the righthanded limit of all the τM . To be pre-
cise, let’s work in the universal cover ofC which is R× I, and consider the
τM to be based at some fixed lift p̃ of p. Then we define a section τ : I →C
by

τ(ν) = sup
M

(
min(τM ∩S1∞(ν))

)
.

Here’s why this supremum exists: First note that we can restrict the supre-
mum to only markers M which contain some fixed set of markers M0.
Then, for any M ⊃ M0, the path τM lies to the left of the the rightward
analogue of τM0 .
Because of the density of markers in every circle S1∞(λ ), it is not hard

to see that τ is continuous. Since the supremum was taken over all finite
subsetsM , the section τ is admissible with respect to the full set of mark-
ers. Finally, if γ is any admissible section, it lies to the right of any τM , and
hence to the left of τ . So τ is the promised leftmost section starting at p. &'



Circles from incomparable leaves:
Laminations and groups of homeomorphisms of the circle 41
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Fig. 6.24.Where the sections can differ.
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Fig. 6.26. Some possible cases.

Proof. Let λi be the leaf where pi ∈ S1
∞(λi). The midpoint of the λi is de-

fined analogously to the midpoint of three points in an R-tree. More pre-
cisely, we let Γ be the union of the three paths γλiλ j . The midpoint is con-
structed by making Γ Hausdorff by amalgamating the cataclysms, taking
the midpoint in the resulting tree, and then pulling back that midpoint to L.
The midpoint consists of either a single point in L or several points of the
same cataclysm. Given Lemma 6.22, if ν is a leaf where all the τpi differ,
then for each pair (i, j) there is a line Ai j containing ν which intersects  γγiγ j .
So a natural place to look for the needed line is near the midpoint of the λi.
There are several cases. First, consider the case where the midpoint is sev-
eral points of the same cataclysm. There are two subcases corresponding
to Figure 6.26(a) and (b). In case (a), the proof of Lemma 6.23 shows that
the three sections differ on the interval I shown. In case (b), first notice that
τp2 and τp3 differ on the interval I. Therefore, τp1 differs from at least one



Universal circles combine naturally under Murasugi sum.
CIRCLES AND QUASIMORPHISMS 53

Figure 21. The universal circle for the foliation of H with suture
aabAAB. The element a has rotation number 2, and its square has
four fixed points on the circle. The element b has rotation number
0, and fixes a pair of points on the circle. The black arcs join the
attracting fixed points of conjugates of a2. The complementary
regions to the black arcs are copies of the universal cover of a once-
punctured torus with generators conjugates of aa, b; the grey arcs
are 4-valent trees, representing the Cayley graphs of these groups.

8.6. A more complicated example. Brittenham [5, 6] constructed many inter-
esting examples of knots in S3 of free genus 1; that is, knots K ⇢ S3 with a Seifert
surface R of genus 1 such that S3 � R is a handlebody H (of genus 2). Any such
pair (H, K) is a taut sutured handlebody, and gives rise to a handlebody realization
of F2.
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For φ : S1 → S1 monotone, core(φ) ⊂ S1 is the subset where φ is
not locally constant.

For X ⊂ L, let core(X ) ⊂ S1
u be the subset where φλ is not locally

constant for some λ ∈ X .

For λ ∈ L, let L±(λ) be the components of L− λ.



For Y ⊂ S1 define Λ(Y ) to be the boundary of the convex hull of
the closure of Y , thought of as an abstract lamination of a
hyperbolic plane bounded by S1.

Definition: Define Λ±(λ) := Λ(core(L±(λ))), and let Λ±u be the
closure of the union of Λ±(λ) over all λ ∈ L.

Proposition: Λ±u are laminations.



Proof: We must show no leaf of Λ+(λ) links any leaf of Λ+(µ) for
λ, µ ∈ L.

Case 1: λ ∈ L−(µ) and µ ∈ L−(λ).

Then L+(µ), L+(λ) are disjoint, and incomparable. Thus the
convex hulls of core(ν1) and core(ν2) are disjoint for ν1 ∈ L+(µ)
and ν2 ∈ L+(λ).



Case 2: λ ∈ L−(µ) and µ ∈ L+(λ).

Then L+(µ) ⊂ L+(λ) so

core(L+(µ)) ⊂ core(L+(λ))



Case 3: λ ∈ L+(µ) and µ ∈ L+(λ)

Then L = L+(µ) ∪ L+(λ) so

core(L+(λ)) ∪ core(L+(µ)) = S1
u



For each λ ∈ L the images φλ(Λ±) are (geodesic) laminations of λ.
The unions sweep out essential laminations Λ± transverse to F .
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ideal boundary S2
∞ of M̃ , and determines a Peano map P : S1

univ → S2
univ

which can be approximated by embeddings.

FIGURE 11. Leaves of Λ̃±
split (red and blue) run up seams in either

direction, and bind the leaves of F̃ (green)

Properties 3 and 5 above imply that for each leaf λ of F̃ , the Peano map P :
S1

univ → S2
univ factors through the monotone map φλ : S1

univ → S1
∞(λ) and induces a

continuous map from S1
∞(λ) to S2

∞(π1(M)), continuously extending the inclusion

λ → M̃ . This so–called continuous extension property is actually established by
Fenley for many classes of taut foliations, including all those with quasigeodesic
transverse (or almost transverse) pseudo–Anosov flows. See [20] for a detailed
discussion.
Pseudo–Anosov packages: Given a pseudo–Anosov package Ψ, all the data of the
package can be recovered from the representation ρuniv : π1(M) → Homeo+(S1

univ)
except for the foliation F . When are distinct taut foliations compatible with the
same pseudo–Anosov package? Are there only finitely many pseudo–Anosov
packages (up to isotopy and the ambiguity of F ) on a fixed 3–manifold?

Figure 11 shows how leaves of Λ̃±
split and of F̃ should interlock. Notice how

the blue leaf branches in the negative direction, and the red leaves branch in the
positive direction. Notice too how the leaves of the laminations are asymptotic

into the “seams” of F̃ .



Basic Question: When are Λ± the stable/unstable laminations of
a pseudo-Anosov flow (almost) transverse to F?


