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The Chabauty space of closed subgroups

Let G be a locally compact second countable group.

SubG = {closed subgroups of G} + the Chabauty topology,

d(H1,H2) =

∫ ∞
0

dH

(
H1 ∩ Br (idG ),H2 ∩ Br (idG )

)
e−rdr .

Exercise

Show that a sequence Hn ∈ SubG converges to a limit H iff

for any h ∈ H there is a sequence hn ∈ Hn such that h = lim hn, and

for any sequence hnk ∈ Hnk , with nk+1 > nk , which converges to a
limit, we have lim hnk ∈ H.
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The Chabauty space of closed subgroups

Examples:

SubR ∼ [0,∞].

Every proper non-trivial closed subgroup of R is of the form αZ for
some α > 0.
α = 0 corresponds to R, and α =∞ to {0}.

SubR2 is homeomorphic to the sphere S4 (Hubbard, Pourezza).

Problem

Describe SubG for G = SL2(R).
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Compactness

Proposition (Exercise)

SubG is compact.

One can use SubG in order to compactify certain sets of closed subgroups.

For instance one can study the Chabauty compactification of the space of
lattices in G . In particular, it is interesting to determine the points of that
compactification:

Problem

Determine which subgroups of SL3(R) are limits of lattices.

This problem might be more accessible if we replace SL3(R) with a group
for which the congruence subgroup property is known for all lattices.
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When is G isolated?

Exercise

Show that if G surjects on S1, then G is not isolated in SubG .

Claim

For connected Lie groups the converse is true as well.

Theorem (Zassenhaus)

A Lie group G admits an identity neighborhood U such that for every
discrete group Γ ≤ G, 〈log(Γ ∩ U)〉 is a nilpotent Lie algebra.

Exercise

Consider G = SLn(Qp) and show that G is an isolated point in SubG .

Hint: Use the following facts:

SLn(Zp) is a maximal subgroup of SLn(Qp).
The Frattini subgroup of SLn(Zp) is open, i.e. of finite index.
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G is isolated

Proposition

Let G = G(k) be the group of k points of a simple algebraic group, where
k is a local field. Then G is an isolated point in SubG .

In the non-archimedean case the proof relies on:
1 A maximal compact subgroup is maximal (Tits) and open.

2 Pink’s criterion: A closed subgroup is open iff it is

Zariski dense
non-discrete, and
not contained in the rational points of a proper subfield.
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Invariant measures on SubG

The group G acts on SubG by conjugation and it is natural to consider the
invariant measures on this compact G -space.

Definition

An Invariant Random Subgroup (hereafter IRS) is a Borel probability
measure on SubG which is invariant under conjugations.
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First examples and remarks

Definition

An IRS is a conjugacy invariant probability measure on SubG .

First examples and remarks:

1 The Dirac measures correspond to normal subgroups.

2 Let Γ ≤ G be a lattice (or more generally a closed subgroup of finite
co-volume).
Let

ψ : G/Γ→ SubG , g 7→ gΓg−1,

Let m be the normalized measure on G/Γ, and set µΓ := ψ∗(m).

Note that µΓ is supported on (the closure of) the conjugacy class of Γ.
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An hyperbolic surface is an IRS

For instance let Σ be a closed hyperbolic surface and normalize its
Riemannian measure. Every unit tangent vector yields an embedding of
π1(Σ) in PSL2(R). Thus the probability measure on the unit tangent
bundle corresponds to an IRS of type (2) above.
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Induction

Let again Γ ≤L G and let N C Γ be a normal subgroup of Γ.

As in (2) the
G -invariant probability measure on G/Γ can be used to choose a random
conjugate of N in G via the map

ψ : G/Γ→ SubG , g 7→ gNg−1.

This is an IRS supported on the (closure of the) conjugacy class of N.

More generally, every IRS on Γ can be induced to an IRS on G . Intuitively,
the random subgroup is obtained by conjugating Γ by a random element
from G/Γ and then picking a random subgroup in the corresponding
conjugate of Γ.

Tsachik Gelander ( Weizmann Institute ) Lattices and Invariant Random Subgroups Ghys’ birthday conference 10 / 58



Induction

Let again Γ ≤L G and let N C Γ be a normal subgroup of Γ. As in (2) the
G -invariant probability measure on G/Γ can be used to choose a random
conjugate of N in G via the map

ψ : G/Γ→ SubG , g 7→ gNg−1.

This is an IRS supported on the (closure of the) conjugacy class of N.

More generally, every IRS on Γ can be induced to an IRS on G . Intuitively,
the random subgroup is obtained by conjugating Γ by a random element
from G/Γ and then picking a random subgroup in the corresponding
conjugate of Γ.

Tsachik Gelander ( Weizmann Institute ) Lattices and Invariant Random Subgroups Ghys’ birthday conference 10 / 58



Induction

Let again Γ ≤L G and let N C Γ be a normal subgroup of Γ. As in (2) the
G -invariant probability measure on G/Γ can be used to choose a random
conjugate of N in G via the map

ψ : G/Γ→ SubG , g 7→ gNg−1.

This is an IRS supported on the (closure of the) conjugacy class of N.

More generally, every IRS on Γ can be induced to an IRS on G . Intuitively,
the random subgroup is obtained by conjugating Γ by a random element
from G/Γ and then picking a random subgroup in the corresponding
conjugate of Γ.

Tsachik Gelander ( Weizmann Institute ) Lattices and Invariant Random Subgroups Ghys’ birthday conference 10 / 58



Connection with p.m.p. actions

Let G y (X ,m) be a probability measure preserving action.

The stabilizer of almost every point in X is closed in G (Varadarajan) and
the stabilizer map

X → SubG , x 7→ Gx

is measurable.
Hence m defines an IRS on G . In other words the random subgroup is the
stabilizer of a random point in X .

The study of p.m.p. G -spaces can be divided to

the study of stabilizers (i.e. IRS),

the study of orbit spaces

and the interplay between the two.
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Connection with p.m.p. actions

The connection between IRS and p.m.p. actions goes also in the other
direction:

Theorem

Let G be a locally compact group and µ an IRS in G. Then there is a
probability space (X ,m) and a measure preserving action G y X such
that µ is the push-forward of the stabilizer map X → SubG .

The first thing that comes to mind is to take the given G action on
(SubG , µ), but then the stabilizer of a point H ∈ SubG is NG (H) rather
than H.

To correct this consider the larger space CosG of all cosets of all closed
subgroups, as a measurable G -bundle over SubG . Define an appropriate
invariant measure on CosG × R and replace each fiber by a Poisson
process on it.
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The space of IRS’s

Definition

We shall denote by IRS(G ) the space of IRS on G equipped with the
w∗-topology.

IRS(G ) := Prob(SubG )G

By Alaoglu’s theorem IRS(G ) is compact.
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Existence

An interesting yet open question is whether this space is always non-trivial.

Question

Does every non-discrete locally compact group admit a non-trivial IRS?

A counterexample, if exists, should be a simple group without lattices.
The candidate is the Neretin group.

Question
1 Does the Neretin group admit a (non-discrete) closed subgroup of

finite co-volume?

2 Does the Neretin group admit a non-trivial discrete IRS?

Remark

There are many discrete groups without nontrivial IRS, for instance
PSLn(Q).
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IRS and Lattices

Viewing IRS as a generalization of lattices there are two directions toward
which one is tempted to go:

1 Extend classical theorems about lattices to general IRS.

2 Use the compact space IRS(G ) in order to study its special ‘lattice’
points.

Remarkably, the approach (2) turns out to be quite fruitful in the theory of
asymptotic properties of lattices.
We shall see later on an example of how rigidity properties of G -actions
yield interesting data of the geometric structure of locally symmetric
spaces Γ\G/K when the volume tends to infinity.

Here is another direction in the spirit of (2), this time with a fixed volume:
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The IRS compactification of moduli spaces

Let Σ be a closed surface of genus ≥ 2. Every hyperbolic structure on Σ
corresponds to an IRS in PSL2(R). Taking the closure in IRS(G ) of the
set of hyperbolic structures on Σ, one obtains an interesting
compactification of the moduli space of Σ.

Problem

Analyse the IRS compactification of Mod(Σ).
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Stuck–Zimmer theorem

Perhaps the first result about IRS and certainly one of the most
remarkable, is the Stuck–Zimmer rigidity theorem, which is a (far
reaching) generalisation of Margulis normal subgroup theorem.

Theorem (SZ, 1994)

Every ergodic p.m.p. action of SL(3,R) is either free or transitive.

Corollary

The non-trivial ergodic IRS in SL(3,R) correspond to lattices.

Corollary

Every IRS of SL(3,Z) is supported on finite index subgroups.
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Soficity of IRS

Definition

Let us say that an IRS µ is sofic if it is a weak-∗ limit in IRS(G ) of ones
supported on lattices.

The following question can be asked for any locally compact group G ,
however I find the 3 special cases of G =SL2(R),SL2(Qp) and Aut(T )
particularly intriguing:

Question

Is every IRS in G sofic?

Exercise

1. Show that the case G = Fn, the discrete rank n free group, is
equivalent to the Aldous–Lyons conjecture that every unimodular network
is a limit of ones corresponding to finite graphs.
2. A Dirac mass δN , N C Fn is sofic iff the corresponding group
G = Fn/N is sofic.
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Lattices

Let G be a locally compact group.

Definition

A closed subgroup H ≤ G is co-finite if the homogeneous space G/H
admits a finite G -invariant measure. A lattice is a discrete co-finite
subgroup.
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Simple analytic groups over local fields

Let G = G(k) be a simple algebraic group over a local field k .
i.e.

k is R,C, a finite extension of Qp or the field Fq((t)) of formal
Laurent series over a finite field

G is a simple k-algebraic group, and G is the group of k rational
points.

You may think of the example G = SL(n,R).
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Arithmetic Groups

Examples:

SL(n,Z) is a non-uniform lattice in SL(n,R).

Let Q(x , y , z ,w) = x2 + y2 + z2 −
√

2w2, let G = SO(Q) and let
Γ = G(Z[

√
2]). Then Γ = H(Z) for some algebraic group H, and

H(R) ∼= SO(3, 1)× SO(4).

Γ is a lattice in H(R). It projects to a lattice in SO(3, 1).

Definition

A subgroup Γ ≤ G is called arithmetic if there is a Q-algebraic group H
and is a surjective map of f : H(R)→ G with compact kernel, such that
f (H(Z)) is commensurable with Γ.

Theorem (Borel–Harish-Chandra)

Suppose that G is simple. Then every arithmetic group is a lattice.
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Some classical results

Suppose that G is a simple non-compact group over a local field.

Theorem (Borel Density)

A proper co-finite subgroup of G is discrete and Zariski dense.

Theorem (Kazhdan–Margulis)

There is an identity neighbourhood U ⊂ G such that every lattice Γ ≤ G
admits a conjugate which intersects U trivially.

Theorem (Margulis’ arithmeticity)

If the k-rank of G is ≥ 2 then every lattice is arithmetic.
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Borel density theorem for IRS

Theorem

Let G be a non-compact simple algebraic group over a local field. Let µ
be a non-atomic IRS in G. Then a µ random subgroup is discrete and
Zariski dense.

The idea (in the Archimedean case) is to consider the maps
SubG → Gr(Lie(G ))

H 7→ Lie(H), and H 7→ Lie(H
Z

),

and push the invariant measure to one on Gr(Lie(G )). By Furstenberg’s
lemma every such measure is trivial.
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Borel density for IRS

Theorem (Borel density for IRS)

Let G be a simple algebraic group over a local field. Let µ be a non-atomic
IRS in G. Then a µ random subgroup is discrete and Zariski dense.

Note that if G is simple, the only possible atoms are at the trivial group
{1} and at G . Since G is an isolated point in SubG , it follows that

IRSd(G ) := {µ ∈ IRS(G ) : a µ-random subgroup is a.s. discrete}

is a compact space. We shall refer to the points of IRSd(G ) as discrete
IRS.
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Uniform Discreteness

Definition

A family F of lattices (or discrete subgroups) of G is said to be uniformly
discrete (UD) if there is an identity neighbourhood Ω ⊂ G which intersects
trivially every conjugate of a member of F .

Conjecture (Margulis)

The family of all co-compact arithmetic lattices in G is UD.

Or equivalently

Conjecture

There is an identity neighbourhood Ω ⊂ G whose intersection with every
arithmetic lattice in G consists of unipotent elements only.
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Weak Uniform Discreteness

Definition

A family of IRS, F ⊂ IRS(G ) is said to be weakly uniformly discrete if for
every ε > 0 there is an identity neighbourhood Ω ⊂ G such that for every
µ ∈ F ,

µ(Γ ∈ Sub(G ) : Γ ∩ Ω is non-trivial) < ε.

A variant of the Margulis’ uniform-discreteness conjecture:

Conjecture

For G as above (simple over local field) the full space IRSd(G ) is weakly
uniformly discrete.

Some evidence:

True for p-adic groups.

True for real Lie groups of rank≥ 2.

Seems to hold also rank one Lie groups (at least for t.f. IRS).
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Stuck–Zimmer rigidity theorem

Theorem (SZ94)

Let G be a connected simple Lie group of real rank ≥ 2. Then every
ergodic p.m.p. action of G is either (essentially) free or transitive.

Thus: every non-atomic ergodic IRS in G is of the form µΓ for some
lattice Γ ≤ G .

Remark
1 The theorem holds for the wider class of higher rank semisimple

groups with property (T ). The situation for certain groups, such as
SL2(R)× SL2(R) is still unknown.

2 Recently A. Levit proved the analog result for groups over
non-archmedean local fields.
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Exotic IRS in rank one

In the lack of Margulis’ normal subgroup theorem one can construct IRS
supported on subgroups of infinite co-volume.

Here is a more exotic example (taken from the [7s] paper)
The 7 samurai: Abert, Bergeron, Biringer, G, Nikolov, Raimbault, Sammet

Let A,B be two copies of a surface with 2 open discs removed equipped
with distinguishable hyperbolic metrics.
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Exotic IRS in SO(n, 1)

Consider the space {A,B}Z with the Bernoulli measure ( 1
2 ,

1
2 )Z. Any

element α ∈ {A,B}Z is a two sided infinite sequence of A’s and B’s and
we can glue copies of A,B ‘along a bi-infinite line’ following this sequence.
This produces a random surface Mα.
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Existence of non-arithmetic manifolds

Theorem (Gromov and Piatetski-Shapiro, 1987)

There exists a non-arithmetic finite volume complete hyperbolic manifold
of any dimension d ≥ 2.

The idea of the proof (in odd dimension) is to cut and glue together two
non-commensurable arithmetic manifolds.
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Most hyperbolic manifolds are non-arithmetic

Using pieces of non-commensurable arithmetic manifolds with 4
(isometric) boundary components, one can obtain plenty of hyperbolic
manifolds modeled over 4-regular finite graph.
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Most hyperbolic manifolds are non-arithmetic

Recall that two manifolds are said to be commensurable if they admit a
common finite cover.

Theorem (G, Levit 2014)

For d ≥ 4 and any V sufficiently large, there are about V V pairwise
non-commensurable hyperbolic n-manifolds of volume ≤ V .

Remark

The upper bound was proved in [Burger,G,Lubotzky,Mozes,2002].

The same estimate holds when counting up to QI of π1.

Among those only polynomially many are arithmetic.
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The Benjamini–Schramm space

Recall the Hausdorff distance dH(A,B) between two closed subsets of a
compact metric space Z

dH(A,B) := inf{ε : Nε(A) ⊃ B and Nε(B) ⊃ A},

and the Gromov distance dG(X ,Y ) between two compact metric spaces
X ,Y

dG(X ,Y ) := inf
X ,Y ↪→Z

dH(X ,Y ).
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The Benjamini–Schramm topology

If (X , p), (Y , q) are pointed compact metric spaces, we define the Gromov
distance

dG((X , p), (Y , q)) := inf
X ,Y ↪→Z

{dH(X ,Y ) + d(p, q)}.

The Gromov–Hausdorff distance between two pointed proper spaces
(X , p), (Y , q) can be defined as

dGH((X , p), (Y , q)) :=

∫
r>0

dG(Br (p),Br (q))e−rdr ,

where Br (p) is the ball of radius r in around p in X .
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The Benjamini–Schramm topology

Let M be the be the space of all (isometry classes of) pointed proper
metric spaces equipped with the Gromov–Hausdorff topology.

Given an integer valued function f (ε, r), let Mf consist of those spaces for
which the ε entropy of the r ball is bounded by f (r , ε). This is a compact
space.

We define the Benjamini–Schramm space BS = Prob(M) to be the space
of all Borel probability measures onM equipped with the weak-∗ topology.
Given f as above, we set BS f := Prob(Mf ). Note that BS f is compact.

Examples:

An example of a point in BS is a measured metric space. A particular case
is a finite volume Riemannian manifold — in which case we normalize the
Riemannian measure to be one, and then randomly choose a point and a
frame.
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The interplay between BS and IRS

Thus a finite volume locally symmetric space M = Γ\G/K produces both
a point in the Benjamini–Schramm space and an IRS in G . This is a
special case of a more general analogy.

Let G = G(k) be a non-compact simple analytic group over a local field k.
Let X be the associated Riemannian symmetric space or Bruhat–Tits
building.

M(X ) = the space of all pointed (or framed) complete metric spaces of
the form Γ\X .

BS(X ) = Prob(M(X )) the corresponding subspace of the
Benjamini–Schramm space.
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The interplay between BS and IRS

There is a natural map

{discrete subgroups of G} →M(X ), Γ 7→ Γ\X .

this map is continuous, hence inducing a continuous map

ψ : IRSd(G )→ BS(X ).

The latter map is one to one, and since IRSd(G ) is compact, it is an
homeomorphism to its image.

Exercise (Invariance under the geodesic flow)

Given a tangent vector v at the origin (the point corresponding to K) of
X = G/K, define a map Fv from M(X ) to itself by moving the special
point using the exponent of v and applying parallel transport to the frame.
This induces a homeomorphism of BS(X ). Show that the image of
IRSd(G ) under the map above is exactly the set of µ ∈ BS(X ) which are
invariant under Fv for all v ∈ TK (G/K ).
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The interplay between BS and IRS

Thus we can view geodesic-flow invariant probability measures on framed
locally X -manifolds as IRS on G and vice versa, and the Benjamini-
-Schramm topology on the first coincides with the IRS-topology on the
second.

Exercise

Show that the analogy above can be generalised, to some extent, to the
context of general locally compact groups: Given a locally compact group
G, fixing a right invariant metric on G, we obtain a map
SubG →M, H 7→ G/H, where the metric on G/H is the induced one.
Show that this map is continuous and deduce that it defines a continuous
map IRS(G )→ BS.
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Farber condition

Let µn ∈ IRS(G ) be a sequence of IRS and let νn = ψ(µn) ∈ BS(X ) be
the corresponding sequence in the Benjamini–Schramm space.

Definition

µn is a Farber sequence if µn
w∗
→ δ〈1〉.

Equivalently, νn is Farber if νn
BS→ X .

For an X -manifold M (or simplicial complex, in the non-archimedean case)
and r > 0, we denote by M≥r the r -thick part in M:

M≥r := {x ∈ M : InjRadM(x) ≥ r}.

Lemma

A sequence Mn of finite volume X-manifolds BS-converges to X iff

vol((Mn)≥r )

vol(Mn)
→ 1, ∀r > 0.

Tsachik Gelander ( Weizmann Institute ) Lattices and Invariant Random Subgroups Ghys’ birthday conference 41 / 58



Farber condition

Let µn ∈ IRS(G ) be a sequence of IRS and let νn = ψ(µn) ∈ BS(X ) be
the corresponding sequence in the Benjamini–Schramm space.

Definition

µn is a Farber sequence if µn
w∗
→ δ〈1〉.

Equivalently, νn is Farber if νn
BS→ X .

For an X -manifold M (or simplicial complex, in the non-archimedean case)
and r > 0, we denote by M≥r the r -thick part in M:

M≥r := {x ∈ M : InjRadM(x) ≥ r}.

Lemma

A sequence Mn of finite volume X-manifolds BS-converges to X iff

vol((Mn)≥r )

vol(Mn)
→ 1, ∀r > 0.

Tsachik Gelander ( Weizmann Institute ) Lattices and Invariant Random Subgroups Ghys’ birthday conference 41 / 58



Farber condition

Let µn ∈ IRS(G ) be a sequence of IRS and let νn = ψ(µn) ∈ BS(X ) be
the corresponding sequence in the Benjamini–Schramm space.

Definition

µn is a Farber sequence if µn
w∗
→ δ〈1〉.

Equivalently, νn is Farber if νn
BS→ X .

For an X -manifold M (or simplicial complex, in the non-archimedean case)
and r > 0, we denote by M≥r the r -thick part in M:

M≥r := {x ∈ M : InjRadM(x) ≥ r}.

Lemma

A sequence Mn of finite volume X-manifolds BS-converges to X iff

vol((Mn)≥r )

vol(Mn)
→ 1, ∀r > 0.

Tsachik Gelander ( Weizmann Institute ) Lattices and Invariant Random Subgroups Ghys’ birthday conference 41 / 58



Farber condition

Let µn ∈ IRS(G ) be a sequence of IRS and let νn = ψ(µn) ∈ BS(X ) be
the corresponding sequence in the Benjamini–Schramm space.

Definition

µn is a Farber sequence if µn
w∗
→ δ〈1〉.

Equivalently, νn is Farber if νn
BS→ X .

For an X -manifold M (or simplicial complex, in the non-archimedean case)
and r > 0, we denote by M≥r the r -thick part in M:

M≥r := {x ∈ M : InjRadM(x) ≥ r}.

Lemma

A sequence Mn of finite volume X-manifolds BS-converges to X iff

vol((Mn)≥r )

vol(Mn)
→ 1, ∀r > 0.

Tsachik Gelander ( Weizmann Institute ) Lattices and Invariant Random Subgroups Ghys’ birthday conference 41 / 58



Farber condition

Let µn ∈ IRS(G ) be a sequence of IRS and let νn = ψ(µn) ∈ BS(X ) be
the corresponding sequence in the Benjamini–Schramm space.

Definition

µn is a Farber sequence if µn
w∗
→ δ〈1〉.

Equivalently, νn is Farber if νn
BS→ X .

For an X -manifold M (or simplicial complex, in the non-archimedean case)
and r > 0, we denote by M≥r the r -thick part in M:

M≥r := {x ∈ M : InjRadM(x) ≥ r}.

Lemma

A sequence Mn of finite volume X-manifolds BS-converges to X iff

vol((Mn)≥r )

vol(Mn)
→ 1, ∀r > 0.

Tsachik Gelander ( Weizmann Institute ) Lattices and Invariant Random Subgroups Ghys’ birthday conference 41 / 58



Asymptotic cohomology

Theorem (7s)

In the Riemannian case. If Mn is a uniformly discrete Farber sequence of
locally X manifolds than for all k ≤ dim(X )

bk(Mn)

vol(Mn)
→ β

(2)
k (X ).

Here

β
(2)
k (X ) =

{
χ(X d )

vol(X d )
k = 1

2 dimX ,

0 otherwise,

where X d is the compact dual of X .

Remark

For sequences of congruence covers effective estimates were obtained.
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Asymptotic cohomology

Theorem (Petersen, Thom, Sauer)

Let G be a totally disconnected locally compact group and Γn ≤ G a
Farber sequence of lattices. Then:

lim inf bi (Γn)
vol(G/Γn) ≥ b

(2)
i (G , µ).

If the sequence is UD then lim bi (Γn)
vol(G/Γn) = b

(2)
i (G , µ).
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Higher rank and Rigidity

Let X be a higher rank irreducible symmetric space.

Theorem (7s)

Let Mn = Γn\X be any sequence of distinct finite volume X-manifolds

with vol(Mn)→∞. Then Mn is Farber

(i.e. Mn
BS→ X).

Equivalently:

Theorem (7s)

For every r and ε there is V such that for any X-manifold M of volume
> V we have

vol(M≥r ) > (1− ε)vol(M).

Jointly with A. Levit we extended this to Bruhat–Tits buildings.
1 The p-adic case is simpler than the real case (one can avoid Property

(T)).
2 The positive characteristic case is more involved. We assumed WUD.
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Manifolds of large volume are fat
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An application of Stuck–Zimmer theorem

Proposition

The only ergodic IRS on G are δG , δ1 and µΓ for Γ ≤ G a lattice.

Proof.

Let µ be an ergodic IRS on G . We have seen that µ is the stabilizer of
some p.m.p. action G y (X ,m). By [SZ ] the latter action is either
essentially free, in which case µ = δ1, or transitive, in which case the
(random) stabilizer is a subgroup of co-finite volume. The Borel density
theorem implies that in the latter case, the stabilizer is either G or a
lattice Γ ≤ G .
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The role of Property (T)

Theorem (Glasner–Weiss)

Let G be a group with property (T) acting by homeomorphisms on a
compact Hausdorff space Ω. Then the set of ergodic G-invariant
probability Borel measures on Ω is w∗-closed.

Thus, the main theorem is equivalent to

Theorem

The only accumulation point of {δ1, δG , µΓ, Γ ≤L G} is δ1.
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The role of Property (T)

Since G is isolated in SubG , δG is isolated in IRS(G ).

Hence we need only to exclude the case that µΓn converges to µΓ for
Γ ≤L G a lattice.

Let
M = Γ\X , Mn = Γn\X .

By property (T), the Cheeger constant of X -manifolds is uniformly
bounded below.
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A picture of the proof
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Interesting cases that are still open

Open cases:

1 Rank one groups with property (T ), such as Sp(n, 1).

2 Higher rank groups without property (T ), such as
SL(2,R)× SL(2,R).
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Convergence of Plancherel measures

Suppose now that k = R. For a uniform lattice Γ ≤ G define the relative
Plancherel measure associated with L2(Γ\G )

νΓ =
1

Vol(G/Γ)

∑
π∈Ĝ

m(π, Γ)δπ

where m(π, Γ) is the multiplicity of π in L2(Γ\G ).
Let νG denote the Plancherel measure of the right regular representation
L2(G ).

Theorem (7s)

Let (Γn) be a uniformly discrete Farber sequence of lattices in G. Then for
any relatively compact νG -regular open subset S ⊂ Ĝ or S ⊂ Ĝtemp we
have

νΓn(S)→ νG (S).
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Convergence of Plancherel measures

For π ∈ Ĝ let d(π) denote the formal degree of π in the regular
representation. Thus d(π) = 0 unless π is a discrete series representation.

Corollary (7s)

Let (Γn) be a uniformly discrete Farber sequence of lattices in G. Then for
all π ∈ Ĝ , we have

m(π, Γ)

vol(Γ\G )
→ d(π).

Remark

The result concerning normalized Betti numbers could be deduced from
the theorem above, but there is also a cheaper trick to prove it.
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Asymptotic of some non-analytic invariants

For a f.g. group Γ let d(Γ) denote its ‘algebraic rank’, i.e. the minimal size
of a generating set.

Theorem

Let G be a connected non-compact simple Lie group. There is a constant
C = C (G , µ) such that

d(Γ) ≤ C · vol(G/Γ)

for every lattice Γ ≤ G.

Conjecture

If rankR(G ) ≥ 2 the algebraic rank d(Γ) is sub-linear w.r.t vol(G/Γ).
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Asymptotic of some non-analytic invariants

The following results were recently obtained by [Abert,G,Nikolov]:

Theorem

Let G a simple Lie group with rankR(G ) ≥ 2 and Γ ≤ G a ‘right angled’
lattice. Then for every sequence of finite index subgroups Γn ≤ Γ with
|Γ : Γn| → ∞, we have

d(Γn)

|Γ : Γn|
→ 0.

Definition

A group Γ is said to be right angled if it admits a finite generating set
{γ1, . . . , γn} consisting of non-torsion consecutively commuting elements.
I.e. [γi , γi+1] = 1, i = 1, . . . , n − 1.

Theorem

Many G’s, e.g. G = SL(n,R), n ≥ 3 or G = SO(p, q) for sufficiently large
p, q admit right angled anisotropic lattices.
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Thank you for listening!

Questions?
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Another example of a manifold of large volume.
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Happy Birthday
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