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Motivation

The theory of group actions on the circle is very rich and there are plenty
of beautiful results on it.

The purpose of this talk is to promote the study of group actions on
surfaces.

Question
Given that the dynamics of surface di↵eomorphisms is very rich and
complicated, what are some good questions about group actions on
surfaces one might hope to solve?
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Homeo(S1): A question of Ghys

The “Tits alternative”(1972) states that every finitely generated subgroup
of GL

n

(R) either is virtually solvable or contains a free subgroup F2.

Generically, a group generated by two matrices A,B 2 GL
n

(R) is free. The
same is true for Homeo(S1).

The Tits alternative is not true for Homeo(S1): Thompson’s group F does
not contain a free subgroup and it is not virtually solvable. It is contained
in Di↵(S1) by a theorem of Ghys-Sergiescu.

Margulis proved the following conjecture of Ghys:

Theorem (Margulis, 2000)

Let G ⇢ Homeo(S1), then either G preserves a measure µ in S1 or G
contains a copy of F2.
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Group actions on surfaces

Let S be a closed surface and let Di↵(S) be the group of C1

di↵eomorphisms of S .

Questions

Let G ⇢ Di↵(S) be a finitely generated group of di↵eomorphisms.

(Ghys) Does either G preserves a measure or contains the free
subgroup F2?

(Ghys) If all the elements of G ⇢ Di↵(S2) have order 60, can G be
infinite? (Burnside problem)

(Zimmer program) A big lattice (something like G = SL6(Z)) should
have no non-trivial actions on surfaces.

(Gromov) A random group should not be contained in Di↵(S).
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Simpler question: Non-minimal actions

Suppose G ⇢ Di↵(S) preserves a non-trivial closed set K . One can always
assume K is minimal for the action.

There are many possibilities for what our closed set K might be:

1 If K is a finite set of points, one obtains a group homomorphism
G ! MCG(S \ K ).

2 If K is connected, the theory of ”prime ends” allows one to obtain a
group homorphism G ! Homeo(S1).

3 Most di�cult case: K has infinitely many components. (For example:
K is a cantor set)
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Mapping class groups of Cantor sets in surfaces

Let K be a cantor set in our surface S .

Definition

Let Di↵(S ,K ) be the group of C1-di↵eomorphisms of S preserving K
(i.e. f (K ) = K ).

Let Di↵0(S ,K ) be the identity component of
Di↵(S ,K ). We define the mapping class group M1(S ,K ) by:

M1(S ,K ) = Di↵(S ,K )/Di↵0(S ,K )
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Ray graph

Let’s consider the surface S = R2 and K ⇢ R2. The Ray graph X is the
simplicial complex defined as follows:

1 For each ray � from 1 to a point in K , there is a vertex v� 2 X .

2 There is an edge between v1 and v2 if they are disjoint.

M0(R2,K ) acts naturally in X by isometries.
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New tool: Hyperbolicity of Ray graph

Theorem (J. Bavard - 2014)

X is Gromov �-hyperbolic and has infinite diameter.

The proof is short and elementary.

There are many basic open questions.

Questions
1 Do hyperbolic elements have positive topological entropy?

2 Are elements in M0(R2,K ) either hyperbolic or elliptic?

3 What about surfaces S of higher genus and two cantor sets K1, K2?

Sebastian Hurtado (IMJ) Di↵eomorphisms of Cantor sets July 1, 2015 9 / 43



New tool: Hyperbolicity of Ray graph

Theorem (J. Bavard - 2014)

X is Gromov �-hyperbolic and has infinite diameter.

The proof is short and elementary.
There are many basic open questions.

Questions
1 Do hyperbolic elements have positive topological entropy?

2 Are elements in M0(R2,K ) either hyperbolic or elliptic?

3 What about surfaces S of higher genus and two cantor sets K1, K2?

Sebastian Hurtado (IMJ) Di↵eomorphisms of Cantor sets July 1, 2015 9 / 43



New tool: Hyperbolicity of Ray graph

Theorem (J. Bavard - 2014)

X is Gromov �-hyperbolic and has infinite diameter.

The proof is short and elementary.
There are many basic open questions.

Questions
1 Do hyperbolic elements have positive topological entropy?

2 Are elements in M0(R2,K ) either hyperbolic or elliptic?

3 What about surfaces S of higher genus and two cantor sets K1, K2?

Sebastian Hurtado (IMJ) Di↵eomorphisms of Cantor sets July 1, 2015 9 / 43



New tool: Hyperbolicity of Ray graph

Theorem (J. Bavard - 2014)

X is Gromov �-hyperbolic and has infinite diameter.

The proof is short and elementary.
There are many basic open questions.

Questions
1 Do hyperbolic elements have positive topological entropy?

2 Are elements in M0(R2,K ) either hyperbolic or elliptic?

3 What about surfaces S of higher genus and two cantor sets K1, K2?

Sebastian Hurtado (IMJ) Di↵eomorphisms of Cantor sets July 1, 2015 9 / 43



New tool: Hyperbolicity of Ray graph

Theorem (J. Bavard - 2014)

X is Gromov �-hyperbolic and has infinite diameter.

The proof is short and elementary.
There are many basic open questions.

Questions
1 Do hyperbolic elements have positive topological entropy?

2 Are elements in M0(R2,K ) either hyperbolic or elliptic?

3 What about surfaces S of higher genus and two cantor sets K1, K2?

Sebastian Hurtado (IMJ) Di↵eomorphisms of Cantor sets July 1, 2015 9 / 43



Di↵eomorphisms of Cantor sets

One might hope to understand M1(S ,K ) by understading the following
exact sequence:

PM1(S ,K ) ! M1(S ,K ) ! Di↵
S

(K ). (1)

Where:

Di↵
S

(K ) is the group of homeomorphisms f̂ of K , coming from
di↵eomorphisms of S , i.e. f̂ 2 Di↵

S

(K ) if there exists f 2 Di↵(S)
such that

f̂ = f |
K

PM1(S ,K ) are the elements of M1(S ,K ) fixing K . Elements in
PM1(S ,K ) are mapping class groups in surfaces of finite type.
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Di↵eomorphisms of Cantor sets

Classical fact: Every Cantor set K ⇢ R2 is homeomorphic to the Ternary
cantor set.

For di↵eomorphisms, the story is di↵erent. A ”generic” cantor
set should have few symmetries.

There are Cantor sets with many “smooth” symmetries:
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Di↵eomorphisms of cantor sets

Questions

How big and complicated the group Di↵
S

(K ) can be?, does it have
some structure?

How are the dynamics of elements of Di↵
S

(K )?
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Example

Simplest example: Ternary Cantor set C in R2.

Theorem (Neretin-Funar(2014))

Any di↵eomorphism f 2 Di↵(S ,C ) is locally a�ne.
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Example

Figure: An element f 2 DiffR2(C )
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Thompson’s group V2 is the subgroup of Di↵R2(C ) consisting of elements
which preserve orientation.

Figure: Another element f 2 DiffR2(C )
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Dynamics in Di↵R2(C )

For g 2 Di↵R2(C ), there exist two g�invariant clopen sets U
g

,V
g

such
that:

1 C = U
g

[ V
g

.

2 g |
U

g

has finite order.

3 The dynamics of g |
V

g

are “attracting-repelling”:

There are finitely many periodic points in V
g

: Rep(g) “repellers” and
Att(g) Attractors.
For every ✏ > 0, there exists M such that, for m � M:

gm(V
g

\ N✏(Rep(g))) ⇢ N✏(Att(g))

g�m(V
g

\ N✏(Att(g))) ⇢ N✏(Rep(g)).
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Dynamics of Di↵R2(C )

Dynamics of elements in Di↵R2(C ) are simple:
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Idea of the proof

Example

For g 2 Di↵R2(C ), there exists a periodic point in C .

Proof.
1 Observation: Two elementary intervals in C are either contained in

each other or are disjoint. This implies that there is ✏0 so that if
|I | < ✏0, then g |

I0 is a�ne.

2 Take a recurrent point x 2 C , and interval I0 containing x .

3 Start iterating by g . If |gn(I0)| < ✏0 (gn|
I0 is a�ne) then when

gn(I ) \ I 6= ;, we get a periodic point.

4 If it grows, there is n0 such that |gn0(I0)| > ✏0. Take smaller I1 ⇢ I0
containing x and apply same reasoning to get n1 gn1(I1) so that
|gn1(I1)| > ✏0 .

5 Continue defining I
k

. As the number of intervals greater than ✏0 are
finite, gn

k (I
k

) = gn

s (I
s

) for some k , s and we get a periodic point.
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More complicated example: Di↵R2(C 2)

C 2 = C ⇥ C ⇢ R2 and the group Di↵R2(C 2).
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(Funar-Neretin(2014)): Elements of are described by diagrams as
follows:

Figure: Subdivision of C 2

(a) Element of Di↵R2(C 2)

Each “rectangle” is mapped a�nely as in the picture. One is also allow to
rotate the rectangles. The elements with no rotation in Di↵R2(C 2) form
what is known as Higher dimensional Thompson group 2V .
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Examples and dynamics

Here are some examples:

Baker’s map:

(a) f

(b) f 2

The dynamics of f are conjugate to the dynamics of the shift
� : {0, 1}Z ! {0, 1}Z sending �(...x

i�1, xi , xi+1...) = (...x
i

, x
i+1, xi+2...).

Conjugation is constructed by taking a point p = (x , y) 2 C 2, taking the
binary expansions of x and y and concatenating them.
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Dynamics in 2V

Question
Does every element f 2 2V has a
periodic point in K 2?

If there is a square C such that f n|
C

is a�ne and f n(C ) \ C 6= ;, there is
a periodic point p 2 C .
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Another example
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Another example

Figure: After 12 tiiterationserationsSebastian Hurtado (IMJ) Di↵eomorphisms of Cantor sets July 1, 2015 24 / 43



Another example
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Another example
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Another example

Figure: Zooming inSebastian Hurtado (IMJ) Di↵eomorphisms of Cantor sets July 1, 2015 24 / 43
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Area preserving maps

As with the Baker map, any area preserving map f 2 2V can be thought
as a map f : {0, 1}Z ! {0, 1}Z. Such f ’s are “locally” a power of the shift
with some local modification.

These maps are known as generalized shifts and were studied by
Cristopher Moore (Generalized shifts: unpredictability and undecidability in
dynamical systems, 1990).

The previous example has complicated dynamics, almost every point is
periodic.
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Dynamics are very complicated

The dynamics of a (complete-reversible)Turing machine with moving tape
can be modeled as an element in 2V .

What is a Turing machine with moving tape?

Q - States

S - Symbols

A set of rules:

R : Q ⇥ S ! Q ⇥ S ⇥ {�1, 0, 1}
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Turing machines

This defines a dynamical system f : Q ⇥ SZ ! Q ⇥ SZ as in the picture:

Easiest Example: Shift.

Q = {q}
S = {a, b}
Rule: Move tape to the left independent of symbol or state.
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Turing machines

Theorem (Belk-Bleak)

Given a complete reversible Turing machine T , there is a corresponding
element f

T

2 2V that conjugates the dynamics of f
T

in C 2 with the
dynamics of T .

As a consequence, there are a lot of unsolvable problems for elements in
2V :

Theorem (BB)

The groups 2V have unsolvable torsion problem.

Theorem (Caissange-Ollinger-Torres(2014))

There is an element g in 2V acting without periodic points in C 2 and
whose action is minimal.
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Results: In collaboration with E. Militon

Theorem

Distorted elements Let S2 be the 2-sphere and K ⇢ S2 a Cantor set.
Then, any pure mapping class (i.e. an element g 2 PM1(S2,K )) is
undistorted in M1(S2,K ).

Corollary

If C is the standard ternary cantor set in S2. Then, any element
g 2 M1(S2,C ) is undistorted.

Theorem
Tits alternative
Any f.g. subgroup G of Thompson’s group V2(or M1(S2,C )) satisfies
one of the following:

1 G contains a copy of F2.

2 G has a finite orbit, i.e. there exists p 2 C such that the set
G (p) := {g(p) |g 2 G} is finite.
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Results: Tits Alternative

We have the following result for the ternary Cantor set C ⇢ S2.

Theorem (MH)

Any f.g. subgroup G of Thompson’s group V2(orM1(S2,C )) satisfies one
of the following:

1 G contains a subgroup isomorphic to F2.

2 G has a finite orbit, i.e. there exists p 2 C such that the set
G (p) := {g(p) |g 2 G} is finite.

Question:

Is there a classification of all the subgroups of M1(S2,C ) that do not
contain F2.?
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Examples:

Thompson’s group F2 ⇢ V2 does not contain a free subgroup. It fixes
two points in K .

S1 := [Sn, the group containing all finite permutations of intervals.
S1 does not have a finite orbit or a free subgroup. But it is not
finitely generated.
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Proof

Idea of the proof: Use the repelling-attracting dynamics of V2 and the
ping-pong Lemma.

Idea.

Suppose there is an element f such that U
f

= ;. The dynamics of f in C
are attracting-repelling, there is a finite set Per0(f ) of attracting and
repelling periodic points of f . If we can find an element h 2 G such that
h(Per0(f )) \ Per0(f ) = ;, then f and g = hfh�1 have attracting-repelling
dynamics and disjoint periodic points. Then, one can apply ping-pong
Lemma.
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Finding our h

Lemma
Let � be a countable group acting on a compact space K by
homeomorphisms and let F ⇢ K be a finite subset. Then either there is
finite orbit of � on K or there exists an element g 2 � sending F disjoint
from itself (i.e. g(F ) \ F = ;).

For a discrete group �, let us take a probability measure µ on � and
suppose that hsupp(µ)i = �. A stationary(harmonic) measure in X for
(�, µ) is a Borel probability measure ⌫ on X such that µ ⇤ ⌫ = ⌫, where
”⇤” denotes the convolution operator. This means that, for every
⌫-measurable set A ✓ X ,

⌫(A) =
X

g2�
⌫(g�1(A))µ(g) (2)
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Proof.
Suppose that there is no element of � sending F disjoint from itself.

Consider the diagonal action of � on K n. Let ~p = (p1, p2, ..., pn) be
an n-tuple consisting of the n di↵erent elements of F in some order.

Take a harmonic probability measure ⌫ on K n supported in �~p.

By assumption, for g 2 �, the element g(~p) is contained in a set of
the form K l ⇥ {p

i

}⇥ Km, therefore:

�~p ⇢
[

0in, l+m=n�1

K l ⇥ {p
i

}⇥ Km.

As ⌫(�~p) = 1, there exist integers i , l and m such that
⌫(K l ⇥ {p

i

}⇥ Km) > 0.
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Proof (Cont.)

Take q 2 K such that ⌫(K l ⇥ {q}⇥ Km) is maximal. Observe that:

⌫(K l ⇥ {q}⇥ Km) =
X

i

⌫(K l ⇥ {g�1
i

(q)}⇥ Km)µ(g
i

).

By maximality ⌫(K l ⇥ {q}⇥ Km) = ⌫(K l ⇥ {g�1(q)}⇥ Km) for
every g in the support of µ and then for every g 2 �.
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Results: Distortion

Let G be a finitely generated group with generating set S , i.e. G = hSi.
For an element f 2 G , l

S

(f ) denotes the minimal word length of the
element f in the alphabet S . An element f 2 G is said to be distorted if

lim
n!1

l
S

(f n)

n
= 0

.

Ex.1: Let G = BS(2, 1) = {a, b|bab�1 = a2}. One can think of a and b
being the functions a : x ! x + 1 and b : x ! 2x in Di↵(R).

Observe that: bnab�n = a2
n

and so a is distorted.
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Results: Distortion

There are no distorted elements in mapping class groups of finite type.
(Farb-Lubotzky-Minsky)

Question:

Are there distorted elements in M1(S ,K )?

Theorem (H-Militon)

Let S2 be the 2-sphere and K ⇢ S2 a Cantor set. Then, any pure mapping
class (i.e. an element g 2 PM1(S2,K )) is undistorted in M1(S2,K ).

Corollary

If C is the standard ternary cantor set in S2. Then, any element
g 2 M1(S2,C ) is undistorted.

We use the techniques developed by Franks-Handel for distortion elements
in surfaces.
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Distortion

Proof (Corollary).

From the exact sequence:

PM1(S2,C ) ! M1(S2,C ) !
⇡

Di↵S2(C ). (3)

1 If g is distorted, then ⇡(g) ⇢ Di↵S2(C ) is distorted.

2 ⇡(g) does not have contracting-repelling dynamics in C , so ⇡(g) has
finite order.

3 gk 2 PM1(S2,C ) and so gk = Id by Theorem 14.
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Distortion: Pure mapping class groups

The proof of our Theorem is based in the techniques developed by
Franks-Handel for distortion on Di↵(S2).

Observation:

Pure mapping class groups are very simple: Any element in PM1(S ,K )
can be thought as a mapping class group of a surface of finite type. (Not
true in Homeo).

Proof.
Take the isotopy:

f
t

= (1� t)f + tId

And so
Df

t

= (1� t)Df + tId

Df is close to the identity near K as every fixed point is accumulated by
fixed points. Therefore f

t

is an isotopy near K .
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So every element f 2 PM1(S ,K ) is isotopic relative to K to f̂ with the
following property:

There exists a decomposition of the surface S into regions U
i

, V
i

, A
i

such
that:

1 There are regions U
i

where f̂ |
U

i

is pseudo-anosov.

2 There are regions V
i

where f̂ |
V

i

= Id.

3 There are annuli A
i

where f̂ |
A

i

is a power of a Dehn twist.
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Pseudo-anosov components

Easy: If f is distorted in M1(S ,K ), then there are no components U
i

where f is pseudo-Anosov.

If not, take a curve c 2 U
i

curve in S2 \ K and observe that any curve
isotopic to f n(c) has length bounded below by an for some a > 1.
But also f n is distorted in some f.g subgroup hT i ⇢ M1(S ,K ), and so

f n =

o(n)Y
g
k

i

The curve f n(c) is isotopic to
o(n)Q

g
i

(c) and if M = max
g

i

2T
kD(g

i

)k, we get

that:
an  l(f n(c))  Mo(n)

A contradiction.
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Dehn twist

Di�cult case: f is a Dehn twist.

Fact: You can’t take the unit segment L to the curve C
n

with o(n)
di↵eomorphisms satisfying kf k1  K .
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Merci!
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