# Diffeomorphisms and smooth mapping class groups of Cantor sets

#### Sebastian Hurtado

Institut de Mathematiques de Jussieu

shurtados16@gmail.com

July 1, 2015

Sebastian Hurtado (IMJ)

Diffeomorphisms of Cantor sets

July 1, 2015 1 / 4

臣

∢ ≣ ▶

Sac

# Overview





#### O Diffeomorphisms of Cantor sets



|                         |                                | → <团→ < 코→ < 코→ < 코 | ৩৫৫    |
|-------------------------|--------------------------------|---------------------|--------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets | July 1, 2015        | 2 / 43 |

#### Motivation

The theory of group actions on the circle is very rich and there are plenty of beautiful results on it.

| Sebastian | Hurtado  | (IMI) |
|-----------|----------|-------|
| Jugastian | Thurtauo |       |

Diffeomorphisms of Cantor sets

July 1, 2015 3 / 43

臣

< ∃ >

590

<□> <□> <□> <□>

#### Motivation

The theory of group actions on the circle is very rich and there are plenty of beautiful results on it.

The purpose of this talk is to promote the study of group actions on surfaces.

|                         |                                | <ロ> < 部> < 部> < 部> < 部> < 部> < 部> < 部 | 596    |
|-------------------------|--------------------------------|---------------------------------------|--------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets | July 1, 2015                          | 3 / 43 |

#### **Motivation**

The theory of group actions on the circle is very rich and there are plenty of beautiful results on it.

The purpose of this talk is to promote the study of group actions on surfaces.

#### Question

Given that the dynamics of surface diffeomorphisms is very rich and complicated, what are some good questions about group actions on surfaces one might hope to solve?

| Sebastian | Hurtado ( | (IMJ) |
|-----------|-----------|-------|
|-----------|-----------|-------|

Diffeomorphisms of Cantor sets

▲□▶ ▲□▶ ▲ 厘▶ July 1, 2015 3 / 43

э

< ∃ >

Sac

The "Tits alternative" (1972) states that every finitely generated subgroup of  $GL_n(\mathbb{R})$  either is virtually solvable or contains a free subgroup  $\mathbb{F}_2$ .

| Sebastian | Hurtado ( | (IMJ) |  |
|-----------|-----------|-------|--|
|           |           | - /   |  |

Diffeomorphisms of Cantor sets

July 1, 2015 4 / 43

æ

500

• ∃ →

< ロ > < 回 > < 回 > < 回 >

The "Tits alternative" (1972) states that every finitely generated subgroup of  $GL_n(\mathbb{R})$  either is virtually solvable or contains a free subgroup  $\mathbb{F}_2$ .

Generically, a group generated by two matrices  $A, B \in GL_n(\mathbb{R})$  is free. The same is true for Homeo( $\mathbb{S}^1$ ).

|                         |                                |              | 9 Q (P |
|-------------------------|--------------------------------|--------------|--------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets | July 1, 2015 | 4 / 43 |

The "Tits alternative" (1972) states that every finitely generated subgroup of  $GL_n(\mathbb{R})$  either is virtually solvable or contains a free subgroup  $\mathbb{F}_2$ .

Generically, a group generated by two matrices  $A, B \in GL_n(\mathbb{R})$  is free. The same is true for Homeo( $\mathbb{S}^1$ ).

The Tits alternative is not true for Homeo<sup>(S1)</sup>: Thompson's group F does not contain a free subgroup and it is not virtually solvable. It is contained in Diff(S<sup>1</sup>) by a theorem of Ghys-Sergiescu.

|                         |                                | < D ) |              | 9QC    |
|-------------------------|--------------------------------|-------|--------------|--------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets |       | July 1, 2015 | 4 / 43 |

The "Tits alternative" (1972) states that every finitely generated subgroup of  $GL_n(\mathbb{R})$  either is virtually solvable or contains a free subgroup  $\mathbb{F}_2$ .

Generically, a group generated by two matrices  $A, B \in GL_n(\mathbb{R})$  is free. The same is true for Homeo( $\mathbb{S}^1$ ).

The Tits alternative is not true for Homeo<sup>(S1)</sup>: Thompson's group F does not contain a free subgroup and it is not virtually solvable. It is contained in Diff(S<sup>1</sup>) by a theorem of Ghys-Sergiescu.

Margulis proved the following conjecture of Ghys:

| Sebastian | Hurtado | (IMJ) |
|-----------|---------|-------|
|-----------|---------|-------|

Diffeomorphisms of Cantor sets

July 1, 2015 4 / 43

▲□▶ ▲□▶ ▲ ≧▶

The "Tits alternative" (1972) states that every finitely generated subgroup of  $GL_n(\mathbb{R})$  either is virtually solvable or contains a free subgroup  $\mathbb{F}_2$ .

Generically, a group generated by two matrices  $A, B \in GL_n(\mathbb{R})$  is free. The same is true for Homeo( $\mathbb{S}^1$ ).

The Tits alternative is not true for Homeo<sup>(S1)</sup>: Thompson's group F does not contain a free subgroup and it is not virtually solvable. It is contained in Diff(S<sup>1</sup>) by a theorem of Ghys-Sergiescu.

Margulis proved the following conjecture of Ghys:

Theorem (Margulis, 2000)

Let  $G \subset Homeo(\mathbb{S}^1)$ , then either G preserves a measure  $\mu$  in  $\mathbb{S}^1$  or G contains a copy of  $\mathbb{F}_2$ .

Sebastian Hurtado (IMJ)

Diffeomorphisms of Cantor sets

July 1, 2015 4 / 43

**E b** 

< □ > < □ > < □ > < □ >

э

Sac

The "Tits alternative" (1972) states that every finitely generated subgroup of  $GL_n(\mathbb{R})$  either is virtually solvable or contains a free subgroup  $\mathbb{F}_2$ .

Generically, a group generated by two matrices  $A, B \in GL_n(\mathbb{R})$  is free. The same is true for Homeo( $\mathbb{S}^1$ ).

The Tits alternative is not true for Homeo<sup>(S1)</sup>: Thompson's group F does not contain a free subgroup and it is not virtually solvable. It is contained in Diff(S<sup>1</sup>) by a theorem of Ghys-Sergiescu.

Margulis proved the following conjecture of Ghys:

Theorem (Margulis, 2000)

Let  $G \subset Homeo(\mathbb{S}^1)$ , then either G preserves a measure  $\mu$  in  $\mathbb{S}^1$  or G contains a copy of  $\mathbb{F}_2$ .

Sebastian Hurtado (IMJ)

Diffeomorphisms of Cantor sets

July 1, 2015 4 / 43

**E b** 

< □ > < □ > < □ > < □ >

э

Sac

Let S be a closed surface and let Diff(S) be the group of  $C^{\infty}$  diffeomorphisms of S.

Sebastian Hurtado (IMJ)

Diffeomorphisms of Cantor sets

July 1, 2015 5

< ∃ >

1, 2015 5 / 43

臣

590

Let S be a closed surface and let Diff(S) be the group of  $C^{\infty}$  diffeomorphisms of S.

#### Questions

Let  $G \subset \text{Diff}(S)$  be a finitely generated group of diffeomorphisms.

|                         |                                | < □ |              | ~<br>~<br>~ |
|-------------------------|--------------------------------|-----|--------------|-------------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets |     | July 1, 2015 | 5 / 43      |

Let S be a closed surface and let Diff(S) be the group of  $C^{\infty}$  diffeomorphisms of S.

#### Questions

Let  $G \subset \text{Diff}(S)$  be a finitely generated group of diffeomorphisms.

 (Ghys) Does either G preserves a measure or contains the free subgroup 𝔽<sub>2</sub>?

|                         | •                              | · • ₹ • • • |
|-------------------------|--------------------------------|-------------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets | July        |

Sac

5 / 43

1, 2015

Let S be a closed surface and let Diff(S) be the group of  $C^{\infty}$  diffeomorphisms of S.



| Seb | astian | Hurtado | (IMJ) |  |
|-----|--------|---------|-------|--|

Diffeomorphisms of Cantor sets

July 1, 2015 <u>5 / 43</u>

Sac

-

< □ > < □ > < □ > < □ >

Let S be a closed surface and let Diff(S) be the group of  $C^{\infty}$  diffeomorphisms of S.

#### Questions

Let  $G \subset \text{Diff}(S)$  be a finitely generated group of diffeomorphisms.

- (Ghys) Does either G preserves a measure or contains the free subgroup 𝔽<sub>2</sub>?
- (Ghys) If all the elements of G ⊂ Diff(S<sup>2</sup>) have order 60, can G be infinite? (Burnside problem)
- (Zimmer program) A big lattice (something like  $G = SL_6(\mathbb{Z})$ ) should have no non-trivial actions on surfaces.

Sebastian Hurtado (IMJ)

Diffeomorphisms of Cantor sets

July 1, 2015 <u>5 / 43</u>

Sac

-

< □ > < □ > < □ > < □ >

Let S be a closed surface and let Diff(S) be the group of  $C^{\infty}$  diffeomorphisms of S.

#### Questions

Let  $G \subset \text{Diff}(S)$  be a finitely generated group of diffeomorphisms.

- (Ghys) Does either G preserves a measure or contains the free subgroup 𝔽<sub>2</sub>?
- (Ghys) If all the elements of G ⊂ Diff(S<sup>2</sup>) have order 60, can G be infinite? (Burnside problem)
- (Zimmer program) A big lattice (something like  $G = SL_6(\mathbb{Z})$ ) should have no non-trivial actions on surfaces.
- (Gromov) A random group should not be contained in Diff(S).

Sebastian Hurtado (IMJ)

Diffeomorphisms of Cantor sets

July 1, 2015 <u>5 / 43</u>

Sac

< ∃ >

▲□▶ ▲□▶ ▲三▶

Suppose  $G \subset \text{Diff}(S)$  preserves a non-trivial closed set K. One can always assume K is minimal for the action.

| Sebastian  | Hurtado | (IMJ) |
|------------|---------|-------|
| Jepastiali | Turtauo |       |

Diffeomorphisms of Cantor sets

July 1, 2015 <u>6 / 43</u>

< ∃⇒

臣

590

5 diy 1, 2

< □ > < □ > < □ > < □ >

Suppose  $G \subset \text{Diff}(S)$  preserves a non-trivial closed set K. One can always assume K is minimal for the action.

There are many possibilities for what our closed set K might be:

• If K is a finite set of points, one obtains a group homomorphism  $G \to MCG(S \setminus K)$ .

| Sebastian | Hurtado ( | (IMJ) |  |
|-----------|-----------|-------|--|
|-----------|-----------|-------|--|

Diffeomorphisms of Cantor sets

July 1, 2015 6 / 43

æ

**E b** 

< ロ > < 回 > < 回 > < 回 >

San

Suppose  $G \subset \text{Diff}(S)$  preserves a non-trivial closed set K. One can always assume K is minimal for the action.

There are many possibilities for what our closed set K might be:

- If K is a finite set of points, one obtains a group homomorphism  $G \to \mathsf{MCG}(S \setminus K).$
- 2 If K is connected, the theory of "prime ends" allows one to obtain a group homorphism  $G \to \text{Homeo}(\mathbb{S}^1)$ .

Diffeomorphisms of Cantor sets

э July 1, 2015 6 / 43

< ∃ >

< ロ > < 団 > < 巨 > <</p>

San

Suppose  $G \subset \text{Diff}(S)$  preserves a non-trivial closed set K. One can always assume K is minimal for the action.

There are many possibilities for what our closed set K might be:

- **1** If K is a finite set of points, one obtains a group homomorphism  $G \to \mathsf{MCG}(S \setminus K).$
- 2 If K is connected, the theory of "prime ends" allows one to obtain a group homorphism  $G \to \text{Homeo}(\mathbb{S}^1)$ .
- Most difficult case: K has infinitely many components. (For example: K is a cantor set)

| Sebastian | Hurtado | (IMJ) |
|-----------|---------|-------|
|-----------|---------|-------|

Diffeomorphisms of Cantor sets

э July 1, 2015 6 / 43

500

-

< □ > < □ > < □ > < □ >

### Mapping class groups of Cantor sets in surfaces

Let K be a cantor set in our surface S.

Definition

Let Diff(S, K) be the group of  $C^{\infty}$ -diffeomorphisms of S preserving K (i.e. f(K) = K).

|                         |                                | < □ → | < ₽ > | く目 | ×≡×        | E  | 9 Q P  |
|-------------------------|--------------------------------|-------|-------|----|------------|----|--------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets |       |       |    | July 1, 20 | 15 | 7 / 43 |

### Mapping class groups of Cantor sets in surfaces

Let K be a cantor set in our surface S.

#### Definition

Let Diff(S, K) be the group of  $C^{\infty}$ -diffeomorphisms of S preserving K (i.e. f(K) = K). Let  $\text{Diff}_0(S, K)$  be the identity component of Diff(S, K).

|                         |                                |           | 臣    | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|-------------------------|--------------------------------|-----------|------|----------------------------------------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets | July 1, 2 | 2015 | 7 / 43                                 |

#### Mapping class groups of Cantor sets in surfaces

Let K be a cantor set in our surface S.

#### Definition

Let Diff(S, K) be the group of  $C^{\infty}$ -diffeomorphisms of S preserving K (i.e. f(K) = K). Let  $\text{Diff}_0(S, K)$  be the identity component of Diff(S, K). We define the mapping class group  $\mathcal{M}^{\infty}(S, K)$  by:

 $\mathcal{M}^{\infty}(S, K) = \operatorname{Diff}(S, K) / \operatorname{Diff}_{0}(S, K)$ 

| Sebastian | Hurtado ( | (IMJ) |
|-----------|-----------|-------|
|-----------|-----------|-------|

Diffeomorphisms of Cantor sets

July 1, 2015 7 / 43

Saa

-

< □ > < □ > < □ > < □ >

#### Ray graph

Let's consider the surface  $S = \mathbb{R}^2$  and  $K \subset \mathbb{R}^2$ . The Ray graph X is the simplicial complex defined as follows:

- For each ray  $\gamma$  from  $\infty$  to a point in K, there is a vertex  $v_{\gamma} \in X$ .
- 2 There is an edge between  $v_1$  and  $v_2$  if they are disjoint.



 $\mathcal{M}^0(\mathbb{R}^2, K)$  acts naturally in X by isometries.

|                         |                                | ▶ 《@ ▶ 《토 ▶ 《토 ▶ ] 특 | 5000   |
|-------------------------|--------------------------------|----------------------|--------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets | July 1, 2015         | 8 / 43 |

Theorem (J. Bavard - 2014)

X is Gromov  $\delta$ -hyperbolic and has infinite diameter.

The proof is short and elementary.

| Sobaction | Hurtado | (INII) |  |
|-----------|---------|--------|--|
| Sebastian | Turtauo |        |  |

Diffeomorphisms of Cantor sets

< □ ▶

< 🗗 ▶

< ∃ >

590 July 1, 2015 9 / 43

Э

Э

Theorem (J. Bavard - 2014)

X is Gromov  $\delta$ -hyperbolic and has infinite diameter.

The proof is short and elementary. There are many basic open questions.

|                         |                                | < □ | ▶ ∢@ ▶ ∢ ≣ ▶ ∢ ≣ ▶ _ ≣ | 996    |
|-------------------------|--------------------------------|-----|------------------------|--------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets |     | July 1, 2015           | 9 / 43 |

Theorem (J. Bavard - 2014)

X is Gromov  $\delta$ -hyperbolic and has infinite diameter.

The proof is short and elementary. There are many basic open questions.

# Questions Do hyperbolic elements have positive topological entropy?

Sebastian Hurtado (IMJ)

Diffeomorphisms of Cantor sets

→ 伊 → → 王 →

July 1, 2015 9 / 43

-

Sac

Theorem (J. Bavard - 2014)

X is Gromov  $\delta$ -hyperbolic and has infinite diameter.

The proof is short and elementary. There are many basic open questions.

# Questions Do hyperbolic elements have positive topological entropy? Are elements in M<sup>0</sup>(R<sup>2</sup>, K) either hyperbolic or elliptic?

Sebastian Hurtado (IMJ)

Diffeomorphisms of Cantor sets

July 1, 2015 9 / 43

-

< □ > < □ > < □ > < □ >

San

Theorem (J. Bavard - 2014)

X is Gromov  $\delta$ -hyperbolic and has infinite diameter.

The proof is short and elementary. There are many basic open questions.

#### Questions

- Do hyperbolic elements have positive topological entropy?
- 2 Are elements in  $\mathcal{M}^0(\mathbb{R}^2, K)$  either hyperbolic or elliptic?
- **③** What about surfaces S of higher genus and two cantor sets  $K_1$ ,  $K_2$ ?

| Sebastian | Hurtado | (IMJ) |
|-----------|---------|-------|
|-----------|---------|-------|

Diffeomorphisms of Cantor sets

July 1, 2015 9 / 43

< □ > < □ > < □ > < □ >

Sac

One might hope to understand  $\mathcal{M}^{\infty}(S, K)$  by understading the following exact sequence:

$$\mathcal{PM}^{\infty}(S,K) \to \mathcal{M}^{\infty}(S,K) \to \text{Diff}_{S}(K).$$
 (1)

Where:

Diff<sub>S</sub>(K) is the group of homeomorphisms *f̂* of K, coming from diffeomorphisms of S, i.e. *f̂* ∈ Diff<sub>S</sub>(K) if there exists f ∈ Diff(S) such that

 $\hat{f} = f|_{K}$ 

•  $\mathcal{PM}^{\infty}(S, K)$  are the elements of  $\mathcal{M}^{\infty}(S, K)$  fixing K. Elements in  $\mathcal{PM}^{\infty}(S, K)$  are mapping class groups in surfaces of finite type.

|                         |                                | < □ |              | ~<br>~<br>~ |
|-------------------------|--------------------------------|-----|--------------|-------------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets |     | July 1, 2015 | 10 / 43     |

Classical fact: Every Cantor set  $K \subset \mathbb{R}^2$  is homeomorphic to the Ternary cantor set.

|                         |                                | < □ > < □ > < | ≣ ► ∢ ≣ ►    | E       |
|-------------------------|--------------------------------|---------------|--------------|---------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets |               | July 1, 2015 | 11 / 43 |

Classical fact: Every Cantor set  $K \subset \mathbb{R}^2$  is homeomorphic to the Ternary cantor set. For diffeomorphisms, the story is different. A "generic" cantor set should have few symmetries.

|                         |                                | < □ ▶ | ∢⊡ ▶ ∢ ≣ ▶ ∢ ≣ ▶ | E       |
|-------------------------|--------------------------------|-------|------------------|---------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets |       | July 1, 2015     | 11 / 43 |

Classical fact: Every Cantor set  $K \subset \mathbb{R}^2$  is homeomorphic to the Ternary cantor set. For diffeomorphisms, the story is different. A "generic" cantor set should have few symmetries.

There are Cantor sets with many "smooth" symmetries:

|                         |                                | ∢□▶∢₫▶∢≧▶∢≧▶ | E       |
|-------------------------|--------------------------------|--------------|---------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets | July 1, 2015 | 11 / 43 |

Classical fact: Every Cantor set  $K \subset \mathbb{R}^2$  is homeomorphic to the Ternary cantor set. For diffeomorphisms, the story is different. A "generic" cantor set should have few symmetries.

There are Cantor sets with many "smooth" symmetries:



|                         |                                | • | > <@> < ≥> < ≥> = ≥ | 5  | 1 Q (? |
|-------------------------|--------------------------------|---|---------------------|----|--------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets |   | July 1, 2015        | 11 | / 43   |

Classical fact: Every Cantor set  $K \subset \mathbb{R}^2$  is homeomorphic to the Ternary cantor set. For diffeomorphisms, the story is different. A "generic" cantor set should have few symmetries.

There are Cantor sets with many "smooth" symmetries:



|                         |                                | • | > <@> < ≥> < ≥> = ≥ | 5  | 1 Q (? |
|-------------------------|--------------------------------|---|---------------------|----|--------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets |   | July 1, 2015        | 11 | / 43   |


## Diffeomorphisms of cantor sets

### Questions

 How big and complicated the group Diff<sub>S</sub>(K) can be?, does it have some structure?

| Sebastian    | Hurtado | (IMJ) | ) |
|--------------|---------|-------|---|
| e en ae tran |         | (     | , |

Diffeomorphisms of Cantor sets

▲ □ ▶ ▲ @ ▶ ▲ @ ▶ ▲ @ ▶ ■
 July 1, 2015 1

≣ ∽へペ 15 13/43

### Diffeomorphisms of cantor sets

#### Questions

- How big and complicated the group Diff<sub>S</sub>(K) can be?, does it have some structure?
- How are the dynamics of elements of  $Diff_{\mathcal{S}}(K)$ ?

| Sebastian Hurtado (IMJ) Diffeomorphisms of Cantor s | sets | July 1, 2015 | 13 / 43 |
|-----------------------------------------------------|------|--------------|---------|

### Diffeomorphisms of cantor sets

#### Questions

- How big and complicated the group Diff<sub>S</sub>(K) can be?, does it have some structure?
- How are the dynamics of elements of  $Diff_{\mathcal{S}}(K)$ ?





|                         |                                | (ロ) (四) (三) (三) (三) (三) (三) (三) (三) (三) (三) (三 | 596     |
|-------------------------|--------------------------------|------------------------------------------------|---------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets | July 1, 2015                                   | 13 / 43 |

Simplest example: Ternary Cantor set C in  $\mathbb{R}^2$ .

|                         |                                | ▶ ◀♬▶ | < ≣ > | < ≣ >       | E | $\mathcal{O}\mathcal{Q}$ |
|-------------------------|--------------------------------|-------|-------|-------------|---|--------------------------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets |       | J     | uly 1, 2015 |   | 14 / 43                  |

Simplest example: Ternary Cantor set C in  $\mathbb{R}^2$ .

| <br> |  |
|------|--|
| <br> |  |
| <br> |  |
| <br> |  |
| <br> |  |

|                         |                                | <□▶ <舂▶ | ◆臣▶ ◆臣▶      | E       |
|-------------------------|--------------------------------|---------|--------------|---------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets |         | July 1, 2015 | 14 / 43 |

Simplest example: Ternary Cantor set C in  $\mathbb{R}^2$ .

|      | <br> |
|------|------|
| <br> | <br> |
|      |      |



|                         |                                | • • | <⊡ > < | ≣▶ ▲ ≣▶      | Ð, | 596     |
|-------------------------|--------------------------------|-----|--------|--------------|----|---------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets |     |        | July 1, 2015 |    | 14 / 43 |

Simplest example: Ternary Cantor set C in  $\mathbb{R}^2$ .

| _ |      |
|---|------|
| _ | <br> |
| _ | <br> |
|   | <br> |
|   | <br> |
|   | <br> |
|   | <br> |



・ロ・ ・ 日・ ・ ヨ・

### Theorem (Neretin-Funar(2014))

Any diffeomorphism  $f \in \text{Diff}(S, C)$  is locally affine.

Sebastian Hurtado (IMJ)

Diffeomorphisms of Cantor sets

July 1, 2015 14 / 43

æ

590

< ∃ >



| Figure: | An | element | f | $\in$ | $\mathfrak{D}\mathfrak{i}$ | $\mathfrak{ff}_{\mathbb{R}^2}$ | (C) | ) |
|---------|----|---------|---|-------|----------------------------|--------------------------------|-----|---|
|---------|----|---------|---|-------|----------------------------|--------------------------------|-----|---|

|                         |                                | < □ | ▶ 《□》 《필》 《필》 | Ð. | 9 Q (P  |
|-------------------------|--------------------------------|-----|---------------|----|---------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets |     | July 1, 2015  |    | 15 / 43 |

Thompson's group  $V_2$  is the subgroup of  $\text{Diff}_{\mathbb{R}^2}(C)$  consisting of elements which preserve orientation.



Figure: Another element  $f \in \mathfrak{Diff}_{\mathbb{R}^2}(C)$ 

|                         |                                | • • | <₿> | <    | < ≣ >     | E | 9 Q (?  |
|-------------------------|--------------------------------|-----|-----|------|-----------|---|---------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets |     |     | July | / 1, 2015 |   | 16 / 43 |

For  $g \in \text{Diff}_{\mathbb{R}^2}(C)$ , there exist two g-invariant clopen sets  $U_g$ ,  $V_g$  such that:

- 2  $g|_{U_g}$  has finite order.
- **③** The dynamics of  $g|_{V_g}$  are "attracting-repelling":
  - There are finitely many periodic points in  $V_g$ : Rep(g) "repellers" and Att(g) Attractors.
  - For every  $\epsilon > 0$ , there exists M such that, for  $m \ge M$ :

 $g^m(V_g \setminus N_\epsilon(\operatorname{Rep}(g))) \subset N_\epsilon(\operatorname{Att}(g))$  $g^{-m}(V_g \setminus N_\epsilon(\operatorname{Att}(g))) \subset N_\epsilon(\operatorname{Rep}(g)).$ 

|                         |                                |  | ◆ Ξ ▶ < Ξ ▶  | ₹. | $\mathcal{O}\mathcal{Q}$ |
|-------------------------|--------------------------------|--|--------------|----|--------------------------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets |  | July 1, 2015 |    | 17 / 43                  |



|                         |                                |             | Ξ. | ✓) Q (↓ |
|-------------------------|--------------------------------|-------------|----|---------|
| Sebastian Hurtado (IMI) | Diffeomorphisms of Cantor sets | July 1 2015 |    | 18 / 43 |



|                         |                                | <ul><li>&lt; □ &gt; &lt; ⊡ &gt; &lt;</li></ul> | [문▶] ★ 문▶ _ 문 | 906     |
|-------------------------|--------------------------------|------------------------------------------------|---------------|---------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets |                                                | July 1, 2015  | 18 / 43 |



|                         | 4                              |              | 9 Q P   |
|-------------------------|--------------------------------|--------------|---------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets | July 1, 2015 | 18 / 43 |



|                         |                                | <ul> <li>&lt; □ &gt; &lt; □ &gt; &lt; □ &gt; &lt; Ξ &gt; &lt; Ξ &gt; Ξ</li> </ul> | うへで     |
|-------------------------|--------------------------------|-----------------------------------------------------------------------------------|---------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets | July 1, 2015                                                                      | 18 / 43 |



|                         |                                | • • • • • • • • • • • • • • • • • • • | ≣▶ ≺ ≣ ▶ ⊂ ≣ | うへで     |
|-------------------------|--------------------------------|---------------------------------------|--------------|---------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets |                                       | July 1, 2015 | 18 / 43 |



|  | ▶ ▲ 토 ▶ ▲ 토 ▶ · 토 | $\mathcal{O} \mathcal{Q} \mathcal{O}$ |
|--|-------------------|---------------------------------------|





#### Example

For  $g \in \operatorname{Diff}_{\mathbb{R}^2}(C)$ , there exists a periodic point in C.

#### Proof.

Observation: Two elementary intervals in C are either contained in each other or are disjoint. This implies that there is e₀ so that if |I| < e₀, then g|I₀ is affine.</li>

Diffeomorphisms of Cantor sets

July 1, 2015

#### Example

For  $g \in \operatorname{Diff}_{\mathbb{R}^2}(C)$ , there exists a periodic point in C.

#### Proof.

- Observation: Two elementary intervals in C are either contained in each other or are disjoint. This implies that there is e₀ so that if |I| < e₀, then g|I₀ is affine.</li>
- **2** Take a recurrent point  $x \in C$ , and interval  $I_0$  containing x.

Diffeomorphisms of Cantor sets

July 1, 2015

#### Example

For  $g \in \operatorname{Diff}_{\mathbb{R}^2}(C)$ , there exists a periodic point in C.

#### Proof.

- Observation: Two elementary intervals in C are either contained in each other or are disjoint. This implies that there is ε<sub>0</sub> so that if |I| < ε<sub>0</sub>, then g|<sub>I0</sub> is affine.
- 2 Take a recurrent point  $x \in C$ , and interval  $I_0$  containing x.
- ③ Start iterating by *g*. If  $|g^n(I_0)| < \epsilon_0$  ( $g^n|_{I_0}$  is affine) then when  $g^n(I) \cap I \neq \emptyset$ , we get a periodic point.

Sebastian Hurtado (IMJ)

Diffeomorphisms of Cantor sets

Jul<u>y</u> 1, <u>2015</u>

#### Example

For  $g \in \text{Diff}_{\mathbb{R}^2}(C)$ , there exists a periodic point in C.

#### Proof.

- Observation: Two elementary intervals in C are either contained in each other or are disjoint. This implies that there is ε<sub>0</sub> so that if |I| < ε<sub>0</sub>, then g|<sub>I0</sub> is affine.
- 2 Take a recurrent point  $x \in C$ , and interval  $I_0$  containing x.
- **③** Start iterating by *g*. If  $|g^n(I_0)| < \epsilon_0$  ( $g^n|_{I_0}$  is affine) then when  $g^n(I) \cap I \neq \emptyset$ , we get a periodic point.
- If it grows, there is n<sub>0</sub> such that |g<sup>n<sub>0</sub></sup>(l<sub>0</sub>)| > e<sub>0</sub>. Take smaller l<sub>1</sub> ⊂ l<sub>0</sub> containing x and apply same reasoning to get n<sub>1</sub> g<sup>n<sub>1</sub></sup>(l<sub>1</sub>) so that |g<sup>n<sub>1</sub></sup>(l<sub>1</sub>)| > e<sub>0</sub>.

Sebastian Hurtado (IMJ)

Diffeomorphisms of Cantor sets

July 1, 2015

#### Example

For  $g \in \operatorname{Diff}_{\mathbb{R}^2}(C)$ , there exists a periodic point in C.

#### Proof.

- Observation: Two elementary intervals in C are either contained in each other or are disjoint. This implies that there is ε<sub>0</sub> so that if |I| < ε<sub>0</sub>, then g|<sub>I0</sub> is affine.
- 2 Take a recurrent point  $x \in C$ , and interval  $I_0$  containing x.
- Start iterating by g. If  $|g^n(I_0)| < \epsilon_0$  ( $g^n|_{I_0}$  is affine) then when  $g^n(I) \cap I \neq \emptyset$ , we get a periodic point.
- If it grows, there is n<sub>0</sub> such that |g<sup>n<sub>0</sub></sup>(l<sub>0</sub>)| > e<sub>0</sub>. Take smaller l<sub>1</sub> ⊂ l<sub>0</sub> containing x and apply same reasoning to get n<sub>1</sub> g<sup>n<sub>1</sub></sup>(l<sub>1</sub>) so that |g<sup>n<sub>1</sub></sup>(l<sub>1</sub>)| > e<sub>0</sub>.
- Solution Continue defining  $I_k$ . As the number of intervals greater than  $\epsilon_0$  are finite,  $g^{n_k}(I_k) = g^{n_s}(I_s)$  for some k, s and we get a periodic point.

Sebastian Hurtado (IMJ)

Diffeomorphisms of Cantor sets

July 1, 2015

# More complicated example: $\text{Diff}_{\mathbb{R}^2}(C^2)$

$$\mathcal{C}^2 = \mathcal{C} imes \mathcal{C} \subset \mathbb{R}^2$$
 and the group  $\operatorname{Diff}_{\mathbb{R}^2}(\mathcal{C}^2)$ .

|  |  |  | :: | :: | :: | :: |                      |  |  |
|--|--|--|----|----|----|----|----------------------|--|--|
|  |  |  | :: |    | :: | :: | 00<br>00<br>00<br>00 |  |  |
|  |  |  | :: | :: | :: | :: |                      |  |  |

|                         |                                | < □ > | ∢@→ ∢≣→ ∢≣→  | Ð. | ୬୧୯     |
|-------------------------|--------------------------------|-------|--------------|----|---------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets |       | July 1, 2015 | 2  | 20 / 43 |

(Funar-Neretin(2014)): Elements of are described by diagrams as follows:



Figure: Subdivision of  $C^2$ 

|                         |                                | < □ | ▶ ∢∄ ▶ ∢ ≣ ▶ ∢ ≣ ▶ | ₹. | 99C     |
|-------------------------|--------------------------------|-----|--------------------|----|---------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets |     | July 1, 2015       |    | 21 / 43 |

(Funar-Neretin(2014)): Elements of are described by diagrams as follows:



Figure: Subdivision of  $C^2$ 

| 1 | 0 | 0 | 2 |   |  |
|---|---|---|---|---|--|
| 1 | 2 | 3 | 4 |   |  |
|   | 2 | 1 | - | F |  |
| Į | 5 | 6 |   | Э |  |
|   |   |   |   |   |  |

(b) Element of  $\operatorname{Diff}_{\mathbb{R}^2}(\mathcal{C}^2)$ 

3

|                         |                                | <□ > <∂ > | < E → < E → - 3 | • ৩৫৫   |
|-------------------------|--------------------------------|-----------|-----------------|---------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets |           | July 1, 2015    | 21 / 43 |

(Funar-Neretin(2014)): Elements of are described by diagrams as follows:



Figure: Subdivision of  $C^2$ 

| 1 | 0 | 0 | 2 | 6 |   |  |
|---|---|---|---|---|---|--|
|   | 2 | 3 | 4 | 6 |   |  |
| 4 |   | 1 | Б | 0 |   |  |
| 5 |   | 6 | 1 | 5 | 3 |  |

(c) Element of  $\operatorname{Diff}_{\mathbb{R}^2}(\mathcal{C}^2)$ 

Each "rectangle" is mapped affinely as in the picture. One is also allow to rotate the rectangles. The elements with no rotation in  $\operatorname{Diff}_{\mathbb{R}^2}(C^2)$  form what is known as **Higher dimensional Thompson group** 2V.

|  | Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets | July 1, 2015 | 21 / 43 |
|--|-------------------------|--------------------------------|--------------|---------|
|--|-------------------------|--------------------------------|--------------|---------|

# Examples and dynamics

Here are some examples:

### Baker's map:



|                         |                                | ▶ ∢ ≣ ▶ _ ∃  | শ প ৫ ৫ |
|-------------------------|--------------------------------|--------------|---------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets | July 1, 2015 | 22 / 43 |

### Examples and dynamics

Here are some examples:

#### Baker's map:



The dynamics of f are conjugate to the dynamics of the shift  $\sigma: \{0,1\}^{\mathbb{Z}} \to \{0,1\}^{\mathbb{Z}}$  sending  $\sigma(...x_{i-1}, x_i, x_{i+1}...) = (...x_i, x_{i+1}, x_{i+2}...).$ 

Conjugation is constructed by taking a point  $p = (x, y) \in C^2$ , taking the binary expansions of x and y and concatenating them.

|                         |                                | < □ ▶ | ∢∄⊁ ∢≣⊁ ∢≣⊁  | E       |
|-------------------------|--------------------------------|-------|--------------|---------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets |       | July 1, 2015 | 22 / 43 |

Question

Does every element  $f \in 2V$  has a periodic point in  $K^2$ ?

Sebastian Hurtado (IMJ)

Diffeomorphisms of Cantor sets

□ ▶ < @ ▶ < 볼 ▶ < 볼 ▶ 를 ▶</li>
 July 1, 2015

#### Question

Does every element  $f \in 2V$  has a periodic point in  $K^2$ ?

If there is a square C such that  $f^n|_C$ is affine and  $f^n(C) \cap C \neq \emptyset$ , there is a periodic point  $p \in C$ .

| Sebastian | Hurtado ( | (IMJ) |  |
|-----------|-----------|-------|--|
| 00000000  |           |       |  |

Diffeomorphisms of Cantor sets

#### Question

Does every element  $f \in 2V$  has a periodic point in  $K^2$ ?

If there is a square C such that  $f^n|_C$ is affine and  $f^n(C) \cap C \neq \emptyset$ , there is a periodic point  $p \in C$ .



|                         |                                | ▶ ▲□ ▶ ▲ ≣ ▶ ▲ ≣ ▶ | E | 996    |
|-------------------------|--------------------------------|--------------------|---|--------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets | July 1, 2015       | 2 | 3 / 43 |

| $\sim$ |        |    |
|--------|--------|----|
| ( )    |        | on |
| Ś      | ันธุรม | UΠ |

Does every element  $f \in 2V$  has a periodic point in  $K^2$ ?

If there is a square C such that  $f^n|_C$  is affine and  $f^n(C) \cap C \neq \emptyset$ , there is a periodic point  $p \in C$ .



| Sebastian  | Hurtado  | (IMJ) |
|------------|----------|-------|
| Jepastiali | Thurtauo |       |

Diffeomorphisms of Cantor sets

# Another example



|                         |                                |  | - * 王 | ▶ ▲≣ ▶       | æ | $\mathcal{O}\mathcal{Q}$ |
|-------------------------|--------------------------------|--|-------|--------------|---|--------------------------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets |  |       | July 1, 2015 |   | 24 / 43                  |

## Another example
































|                         | Circumon After 10 tilteretioneeret |              |         |
|-------------------------|------------------------------------|--------------|---------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets     | July 1, 2015 | 24 / 43 |





|                         | Figure After 20 iterations     |              | E *) Q (* |
|-------------------------|--------------------------------|--------------|-----------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets | July 1, 2015 | 24 / 43   |





|                         | Cinuman After 25 iterations    |              | E ♥) Q (* |
|-------------------------|--------------------------------|--------------|-----------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets | July 1, 2015 | 24 / 43   |





Sebastian Hurtado (IMJ)





Sebastian Hurtado (IMJ)

Diffeomorphisms of Cantor sets

July 1, 2015 24 / 43

### Area preserving maps

As with the Baker map, any area preserving map  $f \in 2V$  can be thought as a map  $f : \{0,1\}^{\mathbb{Z}} \to \{0,1\}^{\mathbb{Z}}$ . Such f's are "locally" a power of the shift with some local modification.

These maps are known as generalized shifts and were studied by Cristopher Moore (Generalized shifts: unpredictability and undecidability in dynamical systems, 1990).





|                         |                                | > <@> < 글> < 글> = 글 | 4  | 5) Q (? |
|-------------------------|--------------------------------|---------------------|----|---------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets | July 1, 2015        | 25 | / 43    |

### Area preserving maps

As with the Baker map, any area preserving map  $f \in 2V$  can be thought as a map  $f : \{0,1\}^{\mathbb{Z}} \to \{0,1\}^{\mathbb{Z}}$ . Such f's are "locally" a power of the shift with some local modification.

These maps are known as generalized shifts and were studied by Cristopher Moore (Generalized shifts: unpredictability and undecidability in dynamical systems, 1990).



The previous example has complicated dynamics, almost every point is periodic.

|                         | 4                              | 토▶ ▲ 토▶ - 토  | うへで     |
|-------------------------|--------------------------------|--------------|---------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets | July 1, 2015 | 25 / 43 |

Dynamics are very complicated

The dynamics of a (complete-reversible)Turing machine with moving tape can be modeled as an element in 2V.

|                         |                                | < □ | ▲ 臣 ▶   ▲ 臣 ▶ | æ, | ୬୯୯     |
|-------------------------|--------------------------------|-----|---------------|----|---------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets |     | July 1, 2015  |    | 26 / 43 |

### Dynamics are very complicated

The dynamics of a (complete-reversible)Turing machine with moving tape can be modeled as an element in 2V.

What is a Turing machine with moving tape?

- Q States
- S Symbols
- A set of rules:

$$R: Q imes S o Q imes S imes \{-1, 0, 1\}$$

|                         |                                | <□> <⊡> | ◆ 臣 ▶   ◆ 臣 ▶ | E       |
|-------------------------|--------------------------------|---------|---------------|---------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets |         | July 1, 2015  | 26 / 43 |

This defines a dynamical system  $f:Q imes S^{\mathbb{Z}} o Q imes S^{\mathbb{Z}}$  as in the picture:

|                         |                                | < □ > < @ > < ≧ > < ≧ > | E       |
|-------------------------|--------------------------------|-------------------------|---------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets | July 1, 2015            | 27 / 43 |

This defines a dynamical system  $f:Q imes S^{\mathbb{Z}} o Q imes S^{\mathbb{Z}}$  as in the picture:



|                         |                                | < □ | ।≻ ∢⊡≻ ∢≣≻ ∢≣≻ ∣ | E nac   |
|-------------------------|--------------------------------|-----|------------------|---------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets |     | July 1, 2015     | 27 / 43 |

This defines a dynamical system  $f:Q imes S^{\mathbb{Z}} o Q imes S^{\mathbb{Z}}$  as in the picture:



#### Easiest Example: Shift.

- $Q = \{q\}$
- *S* = {*a*, *b*}
- Rule: Move tape to the left independent of symbol or state.

|                         |                                | < □ ▶ | <⊡> | < ≣ | ▶ ◀ Ē ▶      | ₹. | うくで     |
|-------------------------|--------------------------------|-------|-----|-----|--------------|----|---------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets |       |     |     | July 1, 2015 | 5  | 27 / 43 |

### Theorem (Belk-Bleak)

Given a complete reversible Turing machine T, there is a corresponding element  $f_T \in 2V$  that conjugates the dynamics of  $f_T$  in  $C^2$  with the dynamics of T.

As a consequence, there are a lot of unsolvable problems for elements in 2V:

### Theorem (BB)

The groups 2V have unsolvable torsion problem.

### Theorem (Caissange-Ollinger-Torres(2014))

There is an element g in 2V acting without periodic points in  $C^2$  and whose action is minimal.

Sebastian Hurtado (IMJ)

Diffeomorphisms of Cantor sets

July 1, 2015 28 / 43

臣

(日)

San

### Results: In collaboration with E. Militon

#### Theorem

Distorted elements Let  $\mathbb{S}^2$  be the 2-sphere and  $K \subset \mathbb{S}^2$  a Cantor set. Then, any pure mapping class (i.e. an element  $g \in \mathcal{PM}^{\infty}(\mathbb{S}^2, K)$ ) is undistorted in  $\mathcal{M}^{\infty}(\mathbb{S}^2, K)$ .

#### Corollary

If C is the standard ternary cantor set in  $\mathbb{S}^2$ . Then, any element  $g \in \mathcal{M}^{\infty}(\mathbb{S}^2, C)$  is undistorted.

#### Theorem

Tits alternative

Any f.g. subgroup G of Thompson's group  $V_2(or \mathcal{M}^{\infty}(\mathbb{S}^2, C))$  satisfies one of the following:

**1** G contains a copy of  $\mathbb{F}_2$ .

Sebastian Hurtado (IMJ)

Diffeomorphisms of Cantor sets

July 1, 2015

29 / 43

### Results: In collaboration with E. Militon

#### Theorem

Distorted elements Let  $\mathbb{S}^2$  be the 2-sphere and  $K \subset \mathbb{S}^2$  a Cantor set. Then, any pure mapping class (i.e. an element  $g \in \mathcal{PM}^{\infty}(\mathbb{S}^2, K)$ ) is undistorted in  $\mathcal{M}^{\infty}(\mathbb{S}^2, K)$ .

#### Corollary

If C is the standard ternary cantor set in  $\mathbb{S}^2$ . Then, any element  $g \in \mathcal{M}^{\infty}(\mathbb{S}^2, C)$  is undistorted.

#### Theorem

Tits alternative

Any f.g. subgroup G of Thompson's group  $V_2(or \mathcal{M}^{\infty}(\mathbb{S}^2, C))$  satisfies one of the following:

- **1** G contains a copy of  $\mathbb{F}_2$ .
- **2** G has a finite orbit, i.e. there exists  $p \in C$  such that the setSebastian Hurtado (IMJ)Diffeomorphisms of Cantor setsJuly 1, 2015

29 / 43

### Results: Tits Alternative

We have the following result for the ternary Cantor set  $C \subset \mathbb{S}^2$ .

Theorem (MH)

Any f.g. subgroup G of Thompson's group  $V_2(or \mathcal{M}^{\infty}(\mathbb{S}^2, C))$  satisfies one of the following:

• G contains a subgroup isomorphic to  $\mathbb{F}^2$ .

|                         |                                | → @ → → 目 → → 目 → → □ | <u>।</u> ୬୯୯ |
|-------------------------|--------------------------------|-----------------------|--------------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets | July 1, 2015          | 30 / 43      |

### Results: Tits Alternative

We have the following result for the ternary Cantor set  $\mathcal{C} \subset \mathbb{S}^2$ .

Theorem (MH)

Any f.g. subgroup G of Thompson's group  $V_2(or \mathcal{M}^{\infty}(\mathbb{S}^2, C))$  satisfies one of the following:

- G contains a subgroup isomorphic to  $\mathbb{F}^2$ .
- 2 *G* has a finite orbit, i.e. there exists  $p \in C$  such that the set  $G(p) := \{g(p) | g \in G\}$  is finite.

|                         |                                | • | • • | ₽► | < E    |      | Ę |
|-------------------------|--------------------------------|---|-----|----|--------|------|---|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets |   |     | Jı | uly 1, | 2015 |   |

୬ < ୯ 30 / 43

### Results: Tits Alternative

We have the following result for the ternary Cantor set  $C \subset \mathbb{S}^2$ .

Theorem (MH)

Any f.g. subgroup G of Thompson's group  $V_2(or \mathcal{M}^{\infty}(\mathbb{S}^2, C))$  satisfies one of the following:

- G contains a subgroup isomorphic to  $\mathbb{F}^2$ .
- **2** *G* has a finite orbit, i.e. there exists  $p \in C$  such that the set  $G(p) := \{g(p) | g \in G\}$  is finite.

### Question:

Is there a classification of all the subgroups of  $\mathcal{M}^{\infty}(\mathbb{S}^2, C)$  that do not contain  $\mathbb{F}^2$ ?

Sebastian Hurtado (IMJ)

Diffeomorphisms of Cantor sets

July 1, 2015 30 / 43

Saa

**E b** 

◆□▶ ◆□▶ ◆ ≧▶

### Examples:

• Thompson's group  $F_2 \subset V_2$  does not contain a free subgroup. It fixes two points in K.

|                         |                                |  | < ≣ > < | ≣ ► 🔡   |      | 9 (P |
|-------------------------|--------------------------------|--|---------|---------|------|------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets |  | July :  | 1, 2015 | 31 / | 43   |

### Examples:

- Thompson's group  $F_2 \subset V_2$  does not contain a free subgroup. It fixes two points in K.
- S<sup>∞</sup> := ∪S<sup>n</sup>, the group containing all finite permutations of intervals.
   S<sup>∞</sup> does not have a finite orbit or a free subgroup.

| Sebastian Hurtado | (IMJ) | Diffeomor |
|-------------------|-------|-----------|

Diffeomorphisms of Cantor sets

July 1, 2015 31 / 43

臣

590

### Examples:

- Thompson's group  $F_2 \subset V_2$  does not contain a free subgroup. It fixes two points in K.
- S<sup>∞</sup> := ∪S<sup>n</sup>, the group containing all finite permutations of intervals.
   S<sup>∞</sup> does not have a finite orbit or a free subgroup. But it is not finitely generated.

| Sebastian | Hurtado  | (IMJ)   |
|-----------|----------|---------|
| Sebastian | Thurtado | (11013) |

Diffeomorphisms of Cantor sets

July 1, 2015 31 / 43

臣

590

Idea of the proof: Use the repelling-attracting dynamics of  $V_2$  and the ping-pong Lemma.

|                         |                                | < □ > | ∢⊡≻ ∢≣≻ ∢≣≻  | E       |
|-------------------------|--------------------------------|-------|--------------|---------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets |       | July 1, 2015 | 32 / 43 |

Idea of the proof: Use the repelling-attracting dynamics of  $V_2$  and the ping-pong Lemma.



|                         |                                | < □ ▶ | <₽► | ▲ 臣 ▶   ◆ 臣 ▶ | ₹. | $\mathcal{O}\mathcal{Q}$ |
|-------------------------|--------------------------------|-------|-----|---------------|----|--------------------------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets |       |     | July 1, 2015  |    | 32 / 43                  |

Idea of the proof: Use the repelling-attracting dynamics of  $V_2$  and the ping-pong Lemma.



### Idea.

Suppose there is an element f such that  $U_f = \emptyset$ . The dynamics of f in C are attracting-repelling, there is a finite set  $Per_0(f)$  of attracting and repelling periodic points of f. If we can find an element  $h \in G$  such that  $h(Per_0(f)) \cap Per_0(f) = \emptyset$ , then f and  $g = hfh^{-1}$  have attracting-repelling dynamics and disjoint periodic points. Then, one can apply ping-pong Lemma.

Diffeomorphisms of Cantor sets

July 1, 2015

32 / 43

### Finding our h

#### Lemma

Let  $\Gamma$  be a countable group acting on a compact space K by homeomorphisms and let  $F \subset K$  be a finite subset. Then either there is finite orbit of  $\Gamma$  on K or there exists an element  $g \in \Gamma$  sending F disjoint from itself (i.e.  $g(F) \cap F = \emptyset$ ).

For a discrete group  $\Gamma$ , let us take a probability measure  $\mu$  on  $\Gamma$  and suppose that  $\langle supp(\mu) \rangle = \Gamma$ . A stationary(harmonic) measure in X for  $(\Gamma, \mu)$  is a Borel probability measure  $\nu$  on X such that  $\mu * \nu = \nu$ , where "\*" denotes the convolution operator. This means that, for every  $\nu$ -measurable set  $A \subset X$ ,

$$\nu(A) = \sum_{g \in \Gamma} \nu(g^{-1}(A))\mu(g) \tag{2}$$

<ロト < 団ト < 団ト < 団ト

Sebastian Hurtado (IMJ)

Diffeomorphisms of Cantor sets

臣 July 1, 2015 33 / 43

San

Suppose that there is no element of  $\Gamma$  sending F disjoint from itself.

• Consider the diagonal action of  $\Gamma$  on  $K^n$ . Let  $\vec{p} = (p_1, p_2, ..., p_n)$  be an *n*-tuple consisting of the *n* different elements of *F* in some order.

| Sebastian | Hurtado    | (IMI) |
|-----------|------------|-------|
| Scoustian | i lui tuuo |       |

Diffeomorphisms of Cantor sets

July 1, 2015 \_\_\_\_\_34 / 43

臣

500

Suppose that there is no element of  $\Gamma$  sending F disjoint from itself.

- Consider the diagonal action of  $\Gamma$  on  $K^n$ . Let  $\vec{p} = (p_1, p_2, ..., p_n)$  be an *n*-tuple consisting of the *n* different elements of *F* in some order.
- Take a harmonic probability measure  $\nu$  on  $K^n$  supported in  $\overline{\Gamma \vec{p}}$ .

|                         |                                | • • |              | æ | 9 Q (?  |
|-------------------------|--------------------------------|-----|--------------|---|---------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets |     | July 1, 2015 |   | 34 / 43 |
|                         |                                |     |              |   |         |

Suppose that there is no element of  $\Gamma$  sending F disjoint from itself.

- Consider the diagonal action of  $\Gamma$  on  $K^n$ . Let  $\vec{p} = (p_1, p_2, ..., p_n)$  be an *n*-tuple consisting of the *n* different elements of *F* in some order.
- Take a harmonic probability measure  $\nu$  on  $K^n$  supported in  $\overline{\Gamma \vec{p}}$ .
- By assumption, for g ∈ Γ, the element g(p) is contained in a set of the form K<sup>l</sup> × {p<sub>i</sub>} × K<sup>m</sup>, therefore:

$$\overline{\Gamma \vec{p}} \subset \bigcup_{0 \leq i \leq n, \ l+m=n-1} K^{l} \times \{p_i\} \times K^{m}.$$

Sebastian Hurtado (IMJ)

Diffeomorphisms of Cantor sets

July 1, 2015 34 / 43

臣

Sac

Suppose that there is no element of  $\Gamma$  sending F disjoint from itself.

- Consider the diagonal action of  $\Gamma$  on  $K^n$ . Let  $\vec{p} = (p_1, p_2, ..., p_n)$  be an n-tuple consisting of the n different elements of F in some order.
- Take a harmonic probability measure  $\nu$  on  $K^n$  supported in  $\overline{\Gamma \vec{p}}$ .
- By assumption, for  $g \in \Gamma$ , the element  $g(\vec{p})$  is contained in a set of the form  $K^{I} \times \{p_{i}\} \times K^{m}$ , therefore:

$$\overline{\Gamma \vec{p}} \subset \bigcup_{0 \leq i \leq n, \ l+m=n-1} K^{l} \times \{p_i\} \times K^{m}.$$

• As  $\nu(\overline{\Gamma \vec{p}}) = 1$ , there exist integers *i*, *l* and *m* such that  $\nu(K^I \times \{p_i\} \times K^m) > 0.$ 

Sebastian Hurtado (IMJ)

Diffeomorphisms of Cantor sets

æ July <u>1, 2015</u> 34 / 43

Sac

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

## Proof (Cont.)

• Take  $q \in K$  such that  $\nu(K^{I} \times \{q\} \times K^{m})$  is maximal. Observe that:

$$u({\mathcal K}' imes\{q\} imes{\mathcal K}^m)=\sum_i
u({\mathcal K}' imes\{g_i^{-1}(q)\} imes{\mathcal K}^m)\mu(g_i).$$

|                         |                                | 《口》《卽》《臣》《臣》 | E       |
|-------------------------|--------------------------------|--------------|---------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets | July 1, 2015 | 35 / 43 |
### Proof (Cont.)

• Take  $q \in K$  such that  $\nu(K^{l} \times \{q\} \times K^{m})$  is maximal. Observe that:

$$u(\mathcal{K}' imes \{q\} imes \mathcal{K}^m) = \sum_i 
u(\mathcal{K}' imes \{g_i^{-1}(q)\} imes \mathcal{K}^m) \mu(g_i).$$

• By maximality  $\nu(K' \times \{q\} \times K^m) = \nu(K' \times \{g^{-1}(q)\} \times K^m)$  for every g in the support of  $\mu$  and then for every  $g \in \Gamma$ .

|                         |                                | ▶ ▲ 🗗 ▶ | < ≣ > < ≣ >  | æ | ~<br>~<br>~ |
|-------------------------|--------------------------------|---------|--------------|---|-------------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets |         | July 1, 2015 |   | 35 / 43     |

# Results: Distortion

Let G be a finitely generated group with generating set S, i.e.  $G = \langle S \rangle$ . For an element  $f \in G$ ,  $I_S(f)$  denotes the minimal word length of the element f in the alphabet S. An element  $f \in G$  is said to be distorted if

$$\lim_{n\to\infty}\frac{I_{\mathcal{S}}(f^n)}{n}=0$$

|                         |                                | • | <ul> <li>◆ @ &gt; &lt; 필 &gt; &lt; 필 &gt;</li> </ul> | 3 | ~<br>~<br>~ |
|-------------------------|--------------------------------|---|------------------------------------------------------|---|-------------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets |   | July 1, 2015                                         |   | 36 / 43     |

#### Results: Distortion

Let G be a finitely generated group with generating set S, i.e.  $G = \langle S \rangle$ . For an element  $f \in G$ ,  $I_S(f)$  denotes the minimal word length of the element f in the alphabet S. An element  $f \in G$  is said to be distorted if

$$\lim_{n\to\infty}\frac{l_{\mathcal{S}}(f^n)}{n}=0$$

**Ex.1:** Let  $G = BS(2, 1) = \{a, b | bab^{-1} = a^2\}$ . One can think of *a* and *b* being the functions  $a : x \to x + 1$  and  $b : x \to 2x$  in  $Diff(\mathbb{R})$ .



Observe that:  $b^n a b^{-n} = a^{2^n}$  and so *a* is distorted.

| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets | July 1, 2015 | 36 / 43 |
|-------------------------|--------------------------------|--------------|---------|

< ≣ ► ≡ < < < <

# Results: Distortion

There are no distorted elements in mapping class groups of finite type. (Farb-Lubotzky-Minsky)

#### Question:

Are there distorted elements in  $\mathcal{M}^{\infty}(S, K)$ ?

#### Theorem (H-Militon)

Let  $\mathbb{S}^2$  be the 2-sphere and  $K \subset \mathbb{S}^2$  a Cantor set. Then, any pure mapping class (i.e. an element  $g \in \mathcal{PM}^{\infty}(\mathbb{S}^2, K)$ ) is undistorted in  $\mathcal{M}^{\infty}(\mathbb{S}^2, K)$ .

#### Corollary

If C is the standard ternary cantor set in  $\mathbb{S}^2$ . Then, any element  $g \in \mathcal{M}^{\infty}(\mathbb{S}^2, C)$  is undistorted.

We use the techniques developed by Franks-Handel for distortion elements in surfaces.

Sebastian Hurtado (IMJ)

Diffeomorphisms of Cantor sets

July 1, 2015 37 / 43

# Distortion

Proof (Corollary).

From the exact sequence:

$$\mathcal{PM}^{\infty}(\mathbb{S}^2, \mathcal{C}) \to \mathcal{M}^{\infty}(\mathbb{S}^2, \mathcal{C}) \xrightarrow{\pi} \text{Diff}_{\mathbb{S}^2}(\mathcal{C}).$$
(3)

- If g is distorted, then  $\pi(g) \subset \text{Diff}_{\mathbb{S}^2}(C)$  is distorted.
- 2  $\pi(g)$  does not have contracting-repelling dynamics in C, so  $\pi(g)$  has finite order.
- 3  $g^k \in \mathcal{PM}^{\infty}(\mathbb{S}^2, C)$  and so  $g^k = \text{Id by Theorem 14}$ .

| Sebastian | Hurtado | (IMJ) |
|-----------|---------|-------|
|-----------|---------|-------|

Diffeomorphisms of Cantor sets

臣 July 1, 2015 38 / 43

590

## Distortion: Pure mapping class groups

The proof of our Theorem is based in the techniques developed by Franks-Handel for distortion on  $Diff(S^2)$ .

Observation:

Pure mapping class groups are very simple: Any element in  $\mathcal{PM}^{\infty}(S, K)$  can be thought as a mapping class group of a surface of finite type. (Not true in Homeo).

#### Proof.

Take the isotopy:

$$f_t = (1-t)f + t\mathsf{Id}$$

And so

$$Df_t = (1-t)Df + t \mathsf{Id}$$

Df is close to the identity near K as every fixed point is accumulated by fixed points. Therefore  $f_t$  is an isotopy near K.

Sebastian Hurtado (IMJ)

Diffeomorphisms of Cantor sets

July 1, 2015 39 / 43

So every element  $f \in \mathcal{PM}^{\infty}(S, K)$  is isotopic relative to K to  $\hat{f}$  with the following property:

There exists a decomposition of the surface S into regions  $U_i$ ,  $V_i$ ,  $A_i$  such that:

- There are regions  $U_i$  where  $\hat{f}|_{U_i}$  is pseudo-anosov.
- **2** There are regions  $V_i$  where  $\hat{f}|_{V_i} = \text{Id}$ .
- **③** There are annuli  $A_i$  where  $\hat{f}|_{A_i}$  is a power of a Dehn twist.

|                         |                                | (≣) (≣)      | €. | ~<br>~<br>~ |
|-------------------------|--------------------------------|--------------|----|-------------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets | July 1, 2015 |    | 40 / 43     |

So every element  $f \in \mathcal{PM}^{\infty}(S, K)$  is isotopic relative to K to  $\hat{f}$  with the following property:

There exists a decomposition of the surface S into regions  $U_i$ ,  $V_i$ ,  $A_i$  such that:

- There are regions  $U_i$  where  $\hat{f}|_{U_i}$  is pseudo-anosov.
- 2 There are regions  $V_i$  where  $\hat{f}|_{V_i} = \text{Id}$ .
- **3** There are annuli  $A_i$  where  $\hat{f}|_{A_i}$  is a power of a Dehn twist.



|                         |                                | <□ ► <⊡ ► < | ≣▶∢≣▶ :      | ≣ <b>୬</b> ৭৫ |
|-------------------------|--------------------------------|-------------|--------------|---------------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets |             | July 1, 2015 | 40 / 43       |

### Pseudo-anosov components

**Easy:** If f is distorted in  $\mathcal{M}^{\infty}(S, K)$ , then there are no components  $U_i$  where f is pseudo-Anosov.

If not, take a curve  $c \in U_i$  curve in  $\mathbb{S}^2 \setminus K$  and observe that any curve isotopic to  $f^n(c)$  has length bounded below by  $a^n$  for some a > 1. But also  $f^n$  is distorted in some f.g subgroup  $\langle T \rangle \subset \mathcal{M}^{\infty}(S, K)$ , and so

$$f^n = \prod_{i=1}^{o(n)} g_{k_i}$$

The curve  $f^n(c)$  is isotopic to  $\prod_{i=1}^{o(n)} g_i(c)$  and if  $M = \max_{g_i \in T} ||D(g_i)||$ , we get that:

$$a^n \leq l(f^n(c)) \leq M^{o(n)}$$

A contradiction.

Sebastian Hurtado (IMJ)

Diffeomorphisms of Cantor sets

< □ →

July 1, 2015 41 / 43

Saa

**E b** 

I ∃ →

# Dehn twist

**Difficult case**: *f* is a Dehn twist.

**Fact**: You can't take the unit segment *L* to the curve  $C_n$  with o(n) diffeomorphisms satisfying  $||f||_{\infty} \leq K$ .

|                         |                                | ∢□▶ ∢♬▶ | < ≣ > < ≣ >  | E       |
|-------------------------|--------------------------------|---------|--------------|---------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets |         | July 1, 2015 | 42 / 43 |

# Dehn twist

**Difficult case**: *f* is a Dehn twist.

**Fact**: You can't take the unit segment *L* to the curve  $C_n$  with o(n) diffeomorphisms satisfying  $||f||_{\infty} \leq K$ .



|                         |                                | • • • | <⊡> | ▲ 臣 ▶   ▲ 臣 ▶ | Ξ. | うくで     |
|-------------------------|--------------------------------|-------|-----|---------------|----|---------|
| Sebastian Hurtado (IMJ) | Diffeomorphisms of Cantor sets |       |     | July 1, 2015  |    | 42 / 43 |

# Merci!

Sebastian Hurtado (IMJ)

Diffeomorphisms of Cantor sets

< □ > < @ > < E > < E > 590 æ, 43 / 43

July 1, 2015