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Question

(von Neumann-Day problem) Do all nonamenable groups contain
F2?

Theorem
(Olshanskii 1979) Tarski monsters exist and are non amenable.

Theorem
(Adyan 1980) The free Burnside group

B(n,p) = (x1, 0 | XP = 1,950
is non amenable for n = 2 and p = 665 odd.

Theorem

(Olshanskii-Sapir 2003) There are finitely presented non amenable
torsion-by-cyclic groups.

Remark: (Sapir) The number of relations in the construction is
more than 10%%°.
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A remarkable group of Richard Thompson.

Definition

(Thompson's group F)The group of all piecewise linear
homeomorphisms of [0, 1] which are differentiable everywhere
except for finitely many dyadic rationals, and derivatives (wherever
they exist) are powers of 2.

(a,b|[abt,a  ba],[ab™ ", a %ba?])

(a1, az,...| ay = apy1,V1 < i <n)

(Thurston 1970's) The group of piecewise PSLy(7Z)
homeomorphisms of R that have continuous first derivative is
isomorphic to F.
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F.
2. Fis of type Fq.
(i.e. there is a connected, aspherical CW complex X such
that m1(X) = F and X has finitely many cells in each
dimension. )

Theorem
(Brown-Geoghegan 1984) F is of type F.

Theorem
(Brin-Squier 1985) F does not contain F».
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PSL2(R) acts on R U {oo} by projective transformations.

a b (X)_ax—irb
c d ex+d

Theorem
(Monod 2012) The group H of all piecewise projective
homeomorphisms of R is nonamenable and does not contain F;.

Monod also isolated countable non amenable subgroups of H.

None of these examples are finitely generatable!



A new finitely presented example.



A new finitely presented example.

a(t)=t+1



A new finitely presented example.
a(t)=t+1

ift<0
ifo<t<;

~

|-
~

~+ W~

+

o=
N

~  ~+



A new finitely presented example.

a(t)=t+1
t ift <0
t 1 1 2t .
b(t)z 1t If0<t<§ C(t): it fo<t<l1
1 1 )
3—-7 ifz<t<l t otherwise
t+1 ifl<t



A new finitely presented example.

a(t)=t+1
t if t<0
_t fo<t<?l 2L jfo<t<1
ORI RS A,
-1 ifi<t<1 t otherwise
t+1 ifl<t

Theorem

(L., Moore)The group G = {a, b, c) is non amenable, does not
contain Fp, and is finitely presented with 3 generators and 9
relations.



A new finitely presented example.

a(t)=t+1
t if t<0
_t fo<t<?l 2L jfo<t<1
ORI RS A,
-1 ifi<t<1 t otherwise
t+1 ifl<t

Theorem

(L., Moore)The group G = {a, b, c) is non amenable, does not
contain Fp, and is finitely presented with 3 generators and 9
relations.

Theorem
(L.) G is of type Fy.



A new finitely presented example.

a(t)=t+1
t if t<0
_t fo<t<?l 2L jfo<t<1
ORI RS A,
-1 ifi<t<1 t otherwise
t+1 ifl<t

Theorem

(L., Moore)The group G = {a, b, c) is non amenable, does not
contain Fp, and is finitely presented with 3 generators and 9
relations.

Theorem
(L.) G is of type Fy.



Nonamenable equivalence relations



Nonamenable equivalence relations

X- Polish space.



Nonamenable equivalence relations

X- Polish space.

1~ be a borel measure on X.



Nonamenable equivalence relations

X- Polish space.
1~ be a borel measure on X.

E < X x X- countable borel equivalence relation.



Nonamenable equivalence relations

X- Polish space.

- be a borel measure on X.

E < X x X- countable borel equivalence relation.
Definition

E is said to be pu-amenable if there is a sequence of Borel maps
f(n) . E — [0,1] such that:



Nonamenable equivalence relations

X- Polish space.
- be a borel measure on X.

E < X x X- countable borel equivalence relation.

Definition

E is said to be pu-amenable if there is a sequence of Borel maps
(" . E — [0,1] such that:

The maps £ : [x] — [0,1], £ (y) = F("(x,y) satisfy:



Nonamenable equivalence relations

X- Polish space.
- be a borel measure on X.

E < X x X- countable borel equivalence relation.

Definition

E is said to be pu-amenable if there is a sequence of Borel maps
(" . E — [0,1] such that:

The maps £ : [x] — [0,1], £ (y) = F("(x,y) satisfy:

1) 16" = 1.



Nonamenable equivalence relations

X- Polish space.

- be a borel measure on X.

E < X x X- countable borel equivalence relation.
Definition

E is said to be pu-amenable if there is a sequence of Borel maps
(" . E — [0,1] such that:

The maps £ : [x] — [0,1], £ (y) = F("(x,y) satisfy:

D) [|A" = L

2) There is a Borel E-invariant co-null set A < X such that
limpooo| |6 — £y = 0 for all (x,y) € E, x,y € A.



Nonamenable equivalence relations

X- Polish space.

- be a borel measure on X.

E < X x X- countable borel equivalence relation.
Definition

E is said to be pu-amenable if there is a sequence of Borel maps
(" . E — [0,1] such that:

The maps £ : [x] — [0,1], £ (y) = F("(x,y) satisfy:

D) [|A" = L

2) There is a Borel E-invariant co-null set A < X such that
limpooo| |6 — £y = 0 for all (x,y) € E, x,y € A.



Nonamenable equivalence relations

X- Polish space.

- be a borel measure on X.

E < X x X- countable borel equivalence relation.
Definition

E is said to be pu-amenable if there is a sequence of Borel maps
(" . E — [0,1] such that:

The maps £ : [x] — [0,1], £ (y) = F("(x,y) satisfy:

D) [|A" = L

2) There is a Borel E-invariant co-null set A < X such that
limpooo| |6 — £y = 0 for all (x,y) € E, x,y € A.

Observation: Actions of countable amenable groups produce
amenable equivalence relations.
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Theorem
(Carriere-Ghys 85) If T is a non discrete non soluble subgroup of
PSLy(R) then ErPSLmR) is nonamenable.

Corollary
E,I-R is nonamenable.

Nonamenability of G.
E; = EF

I is a countable dense subgroup of PSL,(RR).

Theorem
(L.) If a, b are piecewise projective homeomorphisms of R such
that (a, by =~ F then Eg by [s amenable.
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Q - The cantor set of infinite binary sequences.

®:Q—>Ru{wn}

1
®(11m0™1™..) = ny + .
n2 + n3+...
1
®(00™1™0™...) = —(ny + -
n2 + n3+...
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A combinatorial model

(Localization) For each finite binary sequence o:

Xy 1 —Q

Xo(0T) = ox(7)

Xo(T)=TifoET
Vo : 2> Q

Yo(oT) = oy(T)
Yo(T)=TifoET

o o )
a =x,b" =x1,¢c" =y

G =~ {5, yr | o, 7 are finite binary sequences , T is nonconstant})
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Expressible as 3 generators and 9 relations! (< 102%)
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Standard forms

Words of the form fylL...y/ satisfying:
1. f € F (an x-word).
2. 0; <jex 0j if i <.

The <o order
1. 007 <|ex 0l7o.

2. 0T <|ex 0.

Theorem
(L.) Using the relations, each word can be converted into a
standard form fyl...yin such that

On
1. No potential contractions or potential cancellations.
2. f € F isin normal form.

Such a word is unique.

Moreover, yéll yir does not preserve tail equivalence on a dense
subset of its support. (Tail equivalence: o171 ~ 027)
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X©):= the set of right cosets of F in G.

XW:= {{Fg1, Fgx} | F(g185 " )F € {Fyig F, Fyigoyioi F}}
G — XU is vertex transitive.

A complex of clusters

Definition
(n-clusters) A graph isomorphic to the 1-skeleton or an n-cube
together with (possibly) additional diagonal 1-cells.

Definition

Let o” =[0,1]" and A< {x; = xj4+1 | 1 < i < n}.

(n-clusters) oy: the CW complex obtained by the intersection
pattern of hyperplanes in A.
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Striking parallels with Thompson's group F.

» "Small” finite presentations.

» "Symmetric” infinite presentations and normal forms.
» Torsion free, infinite dimensional and Type F.

» Tree diagrams.

» The commutator subgroup is simple and every proper quotient
is abelian.



Some open questions.



Some open questions.

» What is the Tarski number of G?



Some open questions.

» What is the Tarski number of G?

» Is there an explicit paradoxical decomposition for G that uses
the normal form?



Some open questions.

» What is the Tarski number of G?

» Is there an explicit paradoxical decomposition for G that uses
the normal form?

» The group {t + %, b) is non amenable. Is it finitely presented?



Some open questions.

» What is the Tarski number of G?

» Is there an explicit paradoxical decomposition for G that uses
the normal form?

» The group {t + %, b) is non amenable. Is it finitely presented?

» What is the subgroup structure of the group of piecewise
projective homeomorphisms?



