A non amenable group of piecewise projective homeomorphisms

Yash Lodha

EPFL, Lausanne

July 3, 2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

(von Neumann 1929) A discrete group is amenable if it admits a finitely additive left translation invariant probability measure.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

(von Neumann 1929) A discrete group is amenable if it admits a finitely additive left translation invariant probability measure.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Amenability is inherited by subgroups, closed under quotients, products, direct unions, and extentions.

(von Neumann 1929) A discrete group is amenable if it admits a finitely additive left translation invariant probability measure.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Amenability is inherited by subgroups, closed under quotients, products, direct unions, and extentions.

(von Neumann) The free group F_2 is non amenable.

(von Neumann 1929) A discrete group is amenable if it admits a finitely additive left translation invariant probability measure.

Amenability is inherited by subgroups, closed under quotients, products, direct unions, and extentions.

(von Neumann) The free group F_2 is non amenable.

Question

(von Neumann-Day problem) Do all non amenable groups contain F_2 ?

Question

(von Neumann-Day problem) Do all nonamenable groups contain F_2 ?

Theorem

(Olshanskii 1979) Tarski monsters exist and are non amenable.

Question

(von Neumann-Day problem) Do all nonamenable groups contain F_2 ?

Theorem (Olshanskii 1979) Tarski monsters exist and are non amenable.

Theorem (Adyan 1980) The free Burnside group

$$B(n,p) = \langle x_1, ..., x_n \mid X^p = 1, \forall X \rangle$$

is non amenable for $n \ge 2$ and $p \ge 665$ odd.

Question

(von Neumann-Day problem) Do all nonamenable groups contain F_2 ?

Theorem (Olshanskii 1979) Tarski monsters exist and are non amenable.

Theorem (Adyan 1980) The free Burnside group

$$B(n,p) = \langle x_1, ..., x_n \mid X^p = 1, \forall X \rangle$$

is non amenable for $n \ge 2$ and $p \ge 665$ odd.

Theorem

(Olshanskii-Sapir 2003) There are finitely presented non amenable torsion-by-cyclic groups.

Remark: (Sapir) The number of relations in the construction is more than 10^{200} .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definition

(Thompson's group F)The group of all piecewise linear homeomorphisms of [0, 1] which are differentiable everywhere except for finitely many dyadic rationals, and derivatives (wherever they exist) are powers of 2.

Definition

(Thompson's group F)The group of all piecewise linear homeomorphisms of [0, 1] which are differentiable everywhere except for finitely many dyadic rationals, and derivatives (wherever they exist) are powers of 2.

$$\left< \textit{a},\textit{b} \mid [\textit{ab}^{-1},\textit{a}^{-1}\textit{ba}], [\textit{ab}^{-1},\textit{a}^{-2}\textit{ba}^2] \right>$$

Definition

(Thompson's group F)The group of all piecewise linear homeomorphisms of [0, 1] which are differentiable everywhere except for finitely many dyadic rationals, and derivatives (wherever they exist) are powers of 2.

$$\langle \mathsf{a}, \mathsf{b} \mid [\mathsf{a}\mathsf{b}^{-1}, \mathsf{a}^{-1}\mathsf{b}\mathsf{a}], [\mathsf{a}\mathsf{b}^{-1}, \mathsf{a}^{-2}\mathsf{b}\mathsf{a}^2] \rangle$$

$$\langle a_1, a_2, \dots \mid a_n^{a_i} = a_{n+1}, \forall 1 \leq i < n \rangle$$

Definition

(Thompson's group F)The group of all piecewise linear homeomorphisms of [0, 1] which are differentiable everywhere except for finitely many dyadic rationals, and derivatives (wherever they exist) are powers of 2.

$$\langle \mathsf{a}, \mathsf{b} \mid [\mathsf{a}\mathsf{b}^{-1}, \mathsf{a}^{-1}\mathsf{b}\mathsf{a}], [\mathsf{a}\mathsf{b}^{-1}, \mathsf{a}^{-2}\mathsf{b}\mathsf{a}^2] \rangle$$

$$\langle a_1, a_2, \dots \mid a_n^{a_i} = a_{n+1}, \forall 1 \leq i < n \rangle$$

(Thurston 1970's) The group of piecewise $PSL_2(\mathbb{Z})$ homeomorphisms of \mathbb{R} that have continuous first derivative is isomorphic to F.

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 → のへで

Conjecture

(Geoghegan 1979)

1. Thompson's group F is non amenable and does not contain F_2 .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conjecture

(Geoghegan 1979)

1. Thompson's group F is non amenable and does not contain F_2 .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

2. *F* is of type F_{∞} .

Conjecture

(Geoghegan 1979)

- 1. Thompson's group F is non amenable and does not contain F_2 .
- 2. *F* is of type F_{∞} .
 - (i.e. there is a connected, aspherical CW complex X such that $\pi_1(X)=F$ and X has finitely many cells in each dimension.)

Conjecture

(Geoghegan 1979)

- 1. Thompson's group F is non amenable and does not contain F_2 .
- 2. *F* is of type F_{∞} .

(i.e. there is a connected, aspherical CW complex X such that $\pi_1(X)=F$ and X has finitely many cells in each dimension.)

Theorem

(Brown-Geoghegan 1984) F is of type F_{∞} .

Conjecture

(Geoghegan 1979)

- 1. Thompson's group F is non amenable and does not contain F_2 .
- 2. *F* is of type F_{∞} .
 - (i.e. there is a connected, aspherical CW complex X such that $\pi_1(X)=F$ and X has finitely many cells in each dimension.)

Theorem

(Brown-Geoghegan 1984) F is of type F_{∞} .

Theorem (Brin-Squier 1985) F does not contain F₂.

Is F amenable?

・ロト・4 聞 ト く 言 ト く 言 ・ り Q ()

Is F amenable?

"CE GROUPE M'AGACE !" -Etienne Ghys (May 2009)

"CE GROUPE M'AGACE !" -Etienne Ghys (May 2009)

"Often a specific problem can drive mathematical research. Even when we do not resolve it, the various attempts and approaches used by various "attackers" allow a better understanding of the surrounding landscape, which is sometimes more important than the initial problem. "

"CE GROUPE M'AGACE !" -Etienne Ghys (May 2009)

"Often a specific problem can drive mathematical research. Even when we do not resolve it, the various attempts and approaches used by various "attackers" allow a better understanding of the surrounding landscape, which is sometimes more important than the initial problem. "

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

 $\mathsf{PSL}_2(\mathbb{R})$ acts on $\mathbb{R}\cup\{\infty\}$ by projective transformations.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\mathsf{PSL}_2(\mathbb{R})$ acts on $\mathbb{R}\cup\{\infty\}$ by projective transformations.

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)(x) = \frac{ax+b}{cx+d}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\mathsf{PSL}_2(\mathbb{R})$ acts on $\mathbb{R}\cup\{\infty\}$ by projective transformations.

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)(x) = \frac{ax+b}{cx+d}$$

Theorem

(Monod 2012)The group H of all piecewise projective homeomorphisms of \mathbb{R} is nonamenable and does not contain F_2 .

 $\mathsf{PSL}_2(\mathbb{R})$ acts on $\mathbb{R}\cup\{\infty\}$ by projective transformations.

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)(x) = \frac{ax+b}{cx+d}$$

Theorem

(Monod 2012) The group H of all piecewise projective homeomorphisms of \mathbb{R} is nonamenable and does not contain F_2 . Monod also isolated countable non amenable subgroups of H.

 $\mathsf{PSL}_2(\mathbb{R})$ acts on $\mathbb{R} \cup \{\infty\}$ by projective transformations.

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)(x) = \frac{ax+b}{cx+d}$$

Theorem

(Monod 2012) The group H of all piecewise projective homeomorphisms of \mathbb{R} is nonamenable and does not contain F_2 . Monod also isolated countable non amenable subgroups of H.

None of these examples are finitely generatable!

$$a(t) = t + 1$$

$$a(t) = t + 1$$

$$b(t) = \begin{cases} t & \text{if } t \leq 0\\ \frac{t}{1-t} & \text{if } 0 \leq t \leq \frac{1}{2}\\ 3 - \frac{1}{t} & \text{if } \frac{1}{2} \leq t \leq 1\\ t+1 & \text{if } 1 \leq t \end{cases}$$

$$a(t) = t + 1$$

$$b(t) = \begin{cases} t & \text{if } t \leq 0\\ \frac{t}{1-t} & \text{if } 0 \leq t \leq \frac{1}{2}\\ 3 - \frac{1}{t} & \text{if } \frac{1}{2} \leq t \leq 1\\ t+1 & \text{if } 1 \leq t \end{cases} \qquad c(t) = \begin{cases} \frac{2t}{1+t} & \text{if } 0 \leq t \leq 1\\ t & \text{otherwise} \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$a(t) = t + 1$$

$$b(t) = \begin{cases} t & \text{if } t \leq 0\\ \frac{t}{1-t} & \text{if } 0 \leq t \leq \frac{1}{2}\\ 3 - \frac{1}{t} & \text{if } \frac{1}{2} \leq t \leq 1\\ t+1 & \text{if } 1 \leq t \end{cases} \qquad c(t) = \begin{cases} \frac{2t}{1+t} & \text{if } 0 \leq t \leq 1\\ t & \text{otherwise} \end{cases}$$

Theorem

(L., Moore)The group $G = \langle a, b, c \rangle$ is non amenable, does not contain F_2 , and is finitely presented with 3 generators and 9 relations.

$$a(t) = t + 1$$

$$b(t) = \begin{cases} t & \text{if } t \leq 0\\ \frac{t}{1-t} & \text{if } 0 \leq t \leq \frac{1}{2}\\ 3 - \frac{1}{t} & \text{if } \frac{1}{2} \leq t \leq 1\\ t+1 & \text{if } 1 \leq t \end{cases} \qquad c(t) = \begin{cases} \frac{2t}{1+t} & \text{if } 0 \leq t \leq 1\\ t & \text{otherwise} \end{cases}$$

Theorem

(L., Moore)The group $G = \langle a, b, c \rangle$ is non amenable, does not contain F_2 , and is finitely presented with 3 generators and 9 relations.

Theorem (L.) G is of type F_{∞} .

~

$$a(t) = t + 1$$

$$b(t) = \begin{cases} t & \text{if } t \leq 0\\ \frac{t}{1-t} & \text{if } 0 \leq t \leq \frac{1}{2}\\ 3 - \frac{1}{t} & \text{if } \frac{1}{2} \leq t \leq 1\\ t + 1 & \text{if } 1 \leq t \end{cases} \qquad c(t) = \begin{cases} \frac{2t}{1+t} & \text{if } 0 \leq t \leq 1\\ t & \text{otherwise} \end{cases}$$

Theorem

(L., Moore)The group $G = \langle a, b, c \rangle$ is non amenable, does not contain F_2 , and is finitely presented with 3 generators and 9 relations.

Theorem (L.) G is of type F_{∞} . G satisfies Geoghegan's conjecture for F!
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

X- Polish space.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

X- Polish space.

 μ - be a borel measure on X.

- X- Polish space.
- μ be a borel measure on X.
- $E \subseteq X \times X$ countable borel equivalence relation.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- X- Polish space.
- μ be a borel measure on X.
- $E \subseteq X \times X$ countable borel equivalence relation.

Definition

E is said to be μ -amenable if there is a sequence of Borel maps $f^{(n)}: E \to [0, 1]$ such that:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

X- Polish space.

 μ - be a borel measure on X.

 $E \subseteq X \times X$ - countable borel equivalence relation.

Definition

E is said to be μ -amenable if there is a sequence of Borel maps $f^{(n)}: E \to [0, 1]$ such that:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The maps $f_x^{(n)} : [x] \to [0,1], f_x^{(n)}(y) = f^{(n)}(x,y)$ satisfy:

X- Polish space.

 μ - be a borel measure on X.

 $E \subseteq X \times X$ - countable borel equivalence relation.

Definition

E is said to be μ -amenable if there is a sequence of Borel maps $f^{(n)}: E \to [0,1]$ such that: The maps $f_x^{(n)}: [x] \to [0,1]$, $f_x^{(n)}(y) = f^{(n)}(x,y)$ satisfy: 1) $||f_x^{(n)}||_1 = 1$.

X- Polish space.

 μ - be a borel measure on X.

 $E \subseteq X \times X$ - countable borel equivalence relation.

Definition

E is said to be μ -amenable if there is a sequence of Borel maps $f^{(n)}: E \to [0,1]$ such that: The maps $f_x^{(n)}: [x] \to [0,1]$, $f_x^{(n)}(y) = f^{(n)}(x,y)$ satisfy: 1) $||f_x^{(n)}||_1 = 1$. 2) There is a Borel *E*-invariant co-null set $A \subseteq X$ such that $\lim_{n\to\infty} ||f_x^{(n)} - f_y^{(n)}||_1 = 0$ for all $(x, y) \in E$, $x, y \in A$.

X- Polish space.

 μ - be a borel measure on X.

 $E \subseteq X \times X$ - countable borel equivalence relation.

Definition

E is said to be μ -amenable if there is a sequence of Borel maps $f^{(n)}: E \to [0,1]$ such that: The maps $f_x^{(n)}: [x] \to [0,1]$, $f_x^{(n)}(y) = f^{(n)}(x,y)$ satisfy: 1) $||f_x^{(n)}||_1 = 1$. 2) There is a Borel *E*-invariant co-null set $A \subseteq X$ such that $\lim_{n\to\infty} ||f_x^{(n)} - f_y^{(n)}||_1 = 0$ for all $(x, y) \in E$, $x, y \in A$.

X- Polish space.

 μ - be a borel measure on X.

 $E \subseteq X \times X$ - countable borel equivalence relation.

Definition

E is said to be μ -amenable if there is a sequence of Borel maps $f^{(n)}: E \to [0,1]$ such that: The maps $f_x^{(n)}: [x] \to [0,1]$, $f_x^{(n)}(y) = f^{(n)}(x,y)$ satisfy: 1) $||f_x^{(n)}||_1 = 1$. 2) There is a Borel *E*-invariant co-null set $A \subseteq X$ such that $\lim_{n\to\infty} ||f_x^{(n)} - f_y^{(n)}||_1 = 0$ for all $(x, y) \in E$, $x, y \in A$.

Observation: Actions of countable amenable groups produce amenable equivalence relations.

(Carriere-Ghys 85) If Γ is a non discrete non soluble subgroup of $PSL_2(\mathbb{R})$ then $E_{\Gamma}^{PSL_2(\mathbb{R})}$ is nonamenable.

Theorem (Carriere-Ghys 85) If Γ is a non discrete non soluble subgroup of $PSL_2(\mathbb{R})$ then $E_{\Gamma}^{PSL_2(\mathbb{R})}$ is nonamenable.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Corollary

 $E_{\Gamma}^{\mathbb{R}}$ is nonamenable.

(Carriere-Ghys 85) If Γ is a non discrete non soluble subgroup of $PSL_2(\mathbb{R})$ then $E_{\Gamma}^{PSL_2(\mathbb{R})}$ is nonamenable.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Corollary $E_{\Gamma}^{\mathbb{R}}$ is nonamenable. Nonamenability of *G*.

(Carriere-Ghys 85) If Γ is a non discrete non soluble subgroup of $PSL_2(\mathbb{R})$ then $E_{\Gamma}^{PSL_2(\mathbb{R})}$ is nonamenable.

Corollary $E_{\Gamma}^{\mathbb{R}}$ is nonamenable. Nonamenability of *G*.

$$E_G^{\mathbb{R}} = E_{\Gamma}^{\mathbb{R}}$$

 Γ is a countable dense subgroup of $PSL_2(\mathbb{R})$.

(Carriere-Ghys 85) If Γ is a non discrete non soluble subgroup of $PSL_2(\mathbb{R})$ then $E_{\Gamma}^{PSL_2(\mathbb{R})}$ is nonamenable.

Corollary $E_{\Gamma}^{\mathbb{R}}$ is nonamenable. Nonamenability of *G*.

$$E_G^{\mathbb{R}} = E_{\Gamma}^{\mathbb{R}}$$

 Γ is a countable dense subgroup of $PSL_2(\mathbb{R})$.

Theorem

(L.) If a, b are piecewise projective homeomorphisms of \mathbb{R} such that $\langle a, b \rangle \cong F$ then $E_{\langle a, b \rangle}^{\mathbb{R}}$ is amenable.

 Ω - The cantor set of infinite binary sequences.

 Ω - The cantor set of infinite binary sequences.

 $\Phi:\Omega\to\mathbb{R}\cup\{\infty\}$

 Ω - The cantor set of infinite binary sequences.

$$\Phi:\Omega\to\mathbb{R}\cup\{\infty\}$$

$$\Phi(11^{n_1}0^{n_2}1^{n_3}...) = n_1 + \frac{1}{n_2 + \frac{1}{n_3 + ...}}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

 Ω - The cantor set of infinite binary sequences.

$$\Phi:\Omega\to\mathbb{R}\cup\{\infty\}$$

$$\Phi(11^{n_1}0^{n_2}1^{n_3}...) = n_1 + \frac{1}{n_2 + \frac{1}{n_3 + ...}}$$
$$\Phi(00^{n_1}1^{n_2}0^{n_3}...) = -(n_1 + \frac{1}{n_2 + \frac{1}{n_3 + ...}})$$

(ロ)、(型)、(E)、(E)、 E) の(の)

 $x:\Omega\to\Omega$

 $x:\Omega\to\Omega$

 $\begin{aligned} x(00\tau) &= 0\tau \\ x(01\tau) &= 10\tau \\ x(1\tau) &= 11\tau \end{aligned}$

$$x: \Omega \rightarrow \Omega$$

 $x(00\tau) = 0\tau$
 $x(01\tau) = 10\tau$
 $x(1\tau) = 11\tau$

 $y:\Omega\to\Omega$

 $\begin{aligned} x(00\tau) &= 0\tau \\ x(01\tau) &= 10\tau \\ x(1\tau) &= 11\tau \end{aligned}$

 $y: \Omega \to \Omega$

 $x: \Omega \to \Omega$

 $y(00\tau) = 0y(\tau)$ $y(01\tau) = 10y^{-1}(\tau)$ $y(1\tau) = 11y(\tau)$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 $\begin{aligned} x(00\tau) &= 0\tau \\ x(01\tau) &= 10\tau \\ x(1\tau) &= 11\tau \end{aligned}$

 $y: \Omega \to \Omega$

 $x: \Omega \to \Omega$

 $y(00\tau) = 0y(\tau)$ $y(01\tau) = 10y^{-1}(\tau)$ $y(1\tau) = 11y(\tau)$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

(Localization) For each finite binary sequence σ :

(Localization) For each finite binary sequence σ :

 $x_{\sigma}:\Omega\to\Omega$

(Localization) For each finite binary sequence σ :

 $x_{\sigma}:\Omega\to\Omega$

$$x_{\sigma}(\sigma\tau) = \sigma x(\tau)$$
$$x_{\sigma}(\tau) = \tau \text{ if } \sigma \notin \tau$$

(Localization) For each finite binary sequence σ :

 $x_{\sigma}:\Omega\to\Omega$

$$x_{\sigma}(\sigma\tau) = \sigma x(\tau)$$
$$x_{\sigma}(\tau) = \tau \text{ if } \sigma \notin \tau$$

$$y_\sigma:\Omega\to\Omega$$

(Localization) For each finite binary sequence σ :

 $x_{\sigma}:\Omega\to\Omega$

$$x_{\sigma}(\sigma\tau) = \sigma x(\tau)$$
$$x_{\sigma}(\tau) = \tau \text{ if } \sigma \notin \tau$$

$$y_\sigma:\Omega\to\Omega$$

$$y_{\sigma}(\sigma\tau) = \sigma y(\tau)$$
$$y_{\sigma}(\tau) = \tau \text{ if } \sigma \notin \tau$$

(Localization) For each finite binary sequence σ :

 $x_{\sigma}:\Omega\to\Omega$

$$x_{\sigma}(\sigma\tau) = \sigma x(\tau)$$
$$x_{\sigma}(\tau) = \tau \text{ if } \sigma \notin \tau$$

$$y_\sigma:\Omega\to\Omega$$

$$y_{\sigma}(\sigma\tau) = \sigma y(\tau)$$
$$y_{\sigma}(\tau) = \tau \text{ if } \sigma \notin \tau$$

$$a^{\Phi} = x, b^{\Phi} = x_1, c^{\Phi} = y_{10}$$

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

(Localization) For each finite binary sequence σ :

 $x_{\sigma}:\Omega\to\Omega$

$$x_{\sigma}(\sigma\tau) = \sigma x(\tau)$$
$$x_{\sigma}(\tau) = \tau \text{ if } \sigma \notin \tau$$

$$y_\sigma:\Omega\to\Omega$$

$$y_{\sigma}(\sigma\tau) = \sigma y(\tau)$$
$$y_{\sigma}(\tau) = \tau \text{ if } \sigma \notin \tau$$

$$a^{\Phi} = x, b^{\Phi} = x_1, c^{\Phi} = y_{10}$$

 $G \cong \left< \{x_{\sigma}, y_{\tau} \mid \sigma, \tau \text{ are finite binary sequences}, \tau \text{ is nonconstant} \} \right>$

An infinite presentation:

An infinite presentation:

An infinite generating set:

An infinite presentation:

An infinite generating set:

 $\{x_{\sigma}, y_{\tau} \mid \sigma, \tau \text{ are finite binary sequences }, \tau \text{ is nonconstant}\}$
An infinite generating set:

 $\{x_{\sigma}, y_{\tau} \mid \sigma, \tau \text{ are finite binary sequences }, \tau \text{ is nonconstant}\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

An infinite generating set:

 $\{x_{\sigma}, y_{\tau} \mid \sigma, \tau \text{ are finite binary sequences }, \tau \text{ is nonconstant}\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1.
$$x_{\tau}^2 = x_{\tau 0} x_{\tau} x_{\tau 1}$$
.

An infinite generating set:

 $\{x_{\sigma}, y_{\tau} \mid \sigma, \tau \text{ are finite binary sequences }, \tau \text{ is nonconstant}\}$

The relations:

1. $x_{\tau}^2 = x_{\tau 0} x_{\tau} x_{\tau 1}$. 2. If $x_{\sigma}(\tau)$ is defined, $x_{\tau} x_{\sigma} = x_{\sigma} x_{x_{\tau}(\tau)}$.

An infinite generating set:

 $\{x_{\sigma}, y_{\tau} \mid \sigma, \tau \text{ are finite binary sequences }, \tau \text{ is nonconstant}\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1.
$$x_{\tau}^2 = x_{\tau 0} x_{\tau} x_{\tau 1}$$
.
2. If $x_{\sigma}(\tau)$ is defined, $x_{\tau} x_{\sigma} = x_{\sigma} x_{x_{\sigma}(\tau)}$.
3. If $x_{\sigma}(\tau)$ is defined, $y_{\tau} x_{\sigma} = x_{\sigma} y_{x_{\sigma}(\tau)}$.

An infinite generating set:

 $\{x_{\sigma}, y_{\tau} \mid \sigma, \tau \text{ are finite binary sequences }, \tau \text{ is nonconstant}\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1.
$$x_{\tau}^2 = x_{\tau 0} x_{\tau} x_{\tau 1}$$
.
2. If $x_{\sigma}(\tau)$ is defined, $x_{\tau} x_{\sigma} = x_{\sigma} x_{x_{\sigma}(\tau)}$.
3. If $x_{\sigma}(\tau)$ is defined, $y_{\tau} x_{\sigma} = x_{\sigma} y_{x_{\sigma}(\tau)}$.
4. If $\sigma \notin \tau$ and $\tau \notin \sigma$, $y_{\sigma} y_{\tau} = y_{\tau} y_{\sigma}$.

An infinite generating set:

 $\{x_{\sigma}, y_{\tau} \mid \sigma, \tau \text{ are finite binary sequences }, \tau \text{ is nonconstant}\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1.
$$x_{\tau}^2 = x_{\tau 0} x_{\tau} x_{\tau 1}$$
.
2. If $x_{\sigma}(\tau)$ is defined, $x_{\tau} x_{\sigma} = x_{\sigma} x_{x_{\sigma}(\tau)}$.
3. If $x_{\sigma}(\tau)$ is defined, $y_{\tau} x_{\sigma} = x_{\sigma} y_{x_{\sigma}(\tau)}$.
4. If $\sigma \notin \tau$ and $\tau \notin \sigma$, $y_{\sigma} y_{\tau} = y_{\tau} y_{\sigma}$.
5. $y_{\sigma} = x_{\sigma} y_{\sigma 0} y_{\sigma 10}^{-1} y_{\sigma 11}$.

An infinite generating set:

 $\{x_{\sigma}, y_{\tau} \mid \sigma, \tau \text{ are finite binary sequences }, \tau \text{ is nonconstant}\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The relations:

1.
$$x_{\tau}^2 = x_{\tau 0} x_{\tau} x_{\tau 1}$$
.
2. If $x_{\sigma}(\tau)$ is defined, $x_{\tau} x_{\sigma} = x_{\sigma} x_{x_{\sigma}(\tau)}$.
3. If $x_{\sigma}(\tau)$ is defined, $y_{\tau} x_{\sigma} = x_{\sigma} y_{x_{\sigma}(\tau)}$.
4. If $\sigma \notin \tau$ and $\tau \notin \sigma$, $y_{\sigma} y_{\tau} = y_{\tau} y_{\sigma}$.
5. $y_{\sigma} = x_{\sigma} y_{\sigma 0} y_{\sigma 10}^{-1} y_{\sigma 11}$.

Expressible as 3 generators and 9 relations!

An infinite generating set:

 $\{x_{\sigma}, y_{\tau} \mid \sigma, \tau \text{ are finite binary sequences }, \tau \text{ is nonconstant}\}$

The relations:

1.
$$x_{\tau}^2 = x_{\tau 0} x_{\tau} x_{\tau 1}$$
.
2. If $x_{\sigma}(\tau)$ is defined, $x_{\tau} x_{\sigma} = x_{\sigma} x_{x_{\sigma}(\tau)}$.
3. If $x_{\sigma}(\tau)$ is defined, $y_{\tau} x_{\sigma} = x_{\sigma} y_{x_{\sigma}(\tau)}$.
4. If $\sigma \notin \tau$ and $\tau \notin \sigma$, $y_{\sigma} y_{\tau} = y_{\tau} y_{\sigma}$.
5. $y_{\sigma} = x_{\sigma} y_{\sigma 0} y_{\sigma 10}^{-1} y_{\sigma 11}$.

Expressible as 3 generators and 9 relations! ($< 10^{200}$)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Words of the form $fy_{\sigma_1}^{t_1}...y_{\sigma_n}^{t_n}$ satisfying:

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Words of the form $fy_{\sigma_1}^{t_1}...y_{\sigma_n}^{t_n}$ satisfying: 1. $f \in F$ (an x-word).

Words of the form $fy_{\sigma_1}^{t_1}...y_{\sigma_n}^{t_n}$ satisfying:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- 1. $f \in F$ (an x-word).
- 2. $\sigma_i <_{\text{lex}} \sigma_j$ if i < j.

Words of the form $fy_{\sigma_1}^{t_1}...y_{\sigma_n}^{t_n}$ satisfying:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 1. $f \in F$ (an x-word).
- 2. $\sigma_i <_{\text{lex}} \sigma_j$ if i < j.

The $<_{\mathsf{lex}} \mathsf{order}$

Words of the form $fy_{\sigma_1}^{t_1}...y_{\sigma_n}^{t_n}$ satisfying:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. $f \in F$ (an x-word).
- 2. $\sigma_i <_{\text{lex}} \sigma_j$ if i < j.

The $<_{\mathsf{lex}} \mathsf{order}$

1. $\sigma 0 \tau_1 <_{\mathsf{lex}} \sigma 1 \tau_2$.

Words of the form $fy_{\sigma_1}^{t_1}...y_{\sigma_n}^{t_n}$ satisfying:

- 1. $f \in F$ (an x-word).
- 2. $\sigma_i <_{\text{lex}} \sigma_j$ if i < j.

The $<_{\mathsf{lex}} \mathsf{order}$

- 1. $\sigma 0 \tau_1 <_{\text{lex}} \sigma 1 \tau_2$.
- 2. $\sigma \tau <_{\text{lex}} \sigma$.

Theorem

(L.) Using the relations, each word can be converted into a standard form $fy_{\sigma_1}^{t_1}...y_{\sigma_n}^{t_n}$ such that

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Words of the form $fy_{\sigma_1}^{t_1}...y_{\sigma_n}^{t_n}$ satisfying:

- 1. $f \in F$ (an x-word).
- 2. $\sigma_i <_{\text{lex}} \sigma_j$ if i < j.

The $<_{\mathsf{lex}} \mathsf{order}$

- 1. $\sigma 0 \tau_1 <_{\text{lex}} \sigma 1 \tau_2$.
- 2. $\sigma \tau <_{\text{lex}} \sigma$.

Theorem

(L.) Using the relations, each word can be converted into a standard form $fy_{\sigma_1}^{t_1}...y_{\sigma_n}^{t_n}$ such that

1. No potential contractions or potential cancellations.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Words of the form $fy_{\sigma_1}^{t_1}...y_{\sigma_n}^{t_n}$ satisfying:

- 1. $f \in F$ (an x-word).
- 2. $\sigma_i <_{\text{lex}} \sigma_j$ if i < j.

The $<_{\mathsf{lex}} \mathsf{order}$

- 1. $\sigma 0 \tau_1 <_{\text{lex}} \sigma 1 \tau_2$.
- 2. $\sigma \tau <_{\text{lex}} \sigma$.

Theorem

(L.) Using the relations, each word can be converted into a standard form $fy_{\sigma_1}^{t_1}...y_{\sigma_n}^{t_n}$ such that

1. No potential contractions or potential cancellations.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

2. $f \in F$ is in normal form.

Words of the form $fy_{\sigma_1}^{t_1}...y_{\sigma_n}^{t_n}$ satisfying:

- 1. $f \in F$ (an x-word).
- 2. $\sigma_i <_{\text{lex}} \sigma_j$ if i < j.

The $<_{\mathsf{lex}}$ order

- 1. $\sigma 0 \tau_1 <_{\text{lex}} \sigma 1 \tau_2$.
- 2. $\sigma \tau <_{\text{lex}} \sigma$.

Theorem

(L.) Using the relations, each word can be converted into a standard form $fy_{\sigma_1}^{t_1}...y_{\sigma_n}^{t_n}$ such that

1. No potential contractions or potential cancellations.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

2. $f \in F$ is in normal form.

Such a word is unique.

Words of the form $fy_{\sigma_1}^{t_1}...y_{\sigma_n}^{t_n}$ satisfying:

- 1. $f \in F$ (an x-word).
- 2. $\sigma_i <_{\text{lex}} \sigma_j$ if i < j.

The $<_{\mathsf{lex}}$ order

- 1. $\sigma 0\tau_1 <_{\text{lex}} \sigma 1\tau_2$.
- 2. $\sigma \tau <_{\text{lex}} \sigma$.

Theorem

(L.) Using the relations, each word can be converted into a standard form $fy_{\sigma_1}^{t_1}...y_{\sigma_n}^{t_n}$ such that

- 1. No potential contractions or potential cancellations.
- 2. $f \in F$ is in normal form.

Such a word is unique.

Moreover, $y_{\sigma_1}^{t_1}...y_{\sigma_n}^{t_n}$ does not preserve tail equivalence on a dense subset of its support.

Words of the form $fy_{\sigma_1}^{t_1}...y_{\sigma_n}^{t_n}$ satisfying:

- 1. $f \in F$ (an x-word).
- 2. $\sigma_i <_{\text{lex}} \sigma_j$ if i < j.

The $<_{\mathsf{lex}}$ order

- 1. $\sigma 0 \tau_1 <_{\text{lex}} \sigma 1 \tau_2$.
- 2. $\sigma \tau <_{\text{lex}} \sigma$.

Theorem

(L.) Using the relations, each word can be converted into a standard form $fy_{\sigma_1}^{t_1}...y_{\sigma_n}^{t_n}$ such that

- 1. No potential contractions or potential cancellations.
- 2. $f \in F$ is in normal form.

Such a word is unique.

Moreover, $y_{\sigma_1}^{t_1}...y_{\sigma_n}^{t_n}$ does not preserve tail equivalence on a dense subset of its support. (Tail equivalence: $\sigma_1 \tau \sim \sigma_2 \tau$)

 $X^{(0)}$:= the set of right cosets of F in G.

 $X^{(0)}$:= the set of right cosets of F in G.

 $X^{(1)} := \{ \{ Fg_1, Fg_2 \} \mid F(g_1g_2^{-1})F \in \{ Fy_{10}^{\pm 1}F, Fy_{100}^{\pm 1}y_{101}^{\mp 1}F \} \}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $X^{(0)}$:= the set of right cosets of F in G.

 $X^{(1)} := \{ \{ Fg_1, Fg_2 \} \mid F(g_1g_2^{-1})F \in \{ Fy_{10}^{\pm 1}F, Fy_{100}^{\pm 1}y_{101}^{\mp 1}F \} \}$

・ロト・日本・モート モー うへぐ

 $G \rightharpoonup X^{(1)}$ is vertex transitive.

 $X^{(0)}$:= the set of right cosets of F in G.

 $X^{(1)} := \{ \{ Fg_1, Fg_2 \} \mid F(g_1g_2^{-1})F \in \{ Fy_{10}^{\pm 1}F, Fy_{100}^{\pm 1}y_{101}^{\mp 1}F \} \}$

 $G \rightharpoonup X^{(1)}$ is vertex transitive.

A complex of *clusters*

 $X^{(0)}$:= the set of right cosets of F in G.

 $X^{(1)} := \{ \{ Fg_1, Fg_2 \} \mid F(g_1g_2^{-1})F \in \{ Fy_{10}^{\pm 1}F, Fy_{100}^{\pm 1}y_{101}^{\mp 1}F \} \}$

 $G \rightharpoonup X^{(1)}$ is vertex transitive.

A complex of *clusters*

Definition

(*n*-clusters) A graph isomorphic to the 1-skeleton or an *n*-cube together with (possibly) additional *diagonal* 1-cells.

Definition

Let
$$\Box^n = [0,1]^n$$
 and $A \subseteq \{x_i = x_{i+1} \mid 1 \le i < n\}.$

 $X^{(0)}$:= the set of right cosets of F in G.

 $X^{(1)} := \{ \{ Fg_1, Fg_2 \} \mid F(g_1g_2^{-1})F \in \{ Fy_{10}^{\pm 1}F, Fy_{100}^{\pm 1}y_{101}^{\mp 1}F \} \}$

 $G \rightharpoonup X^{(1)}$ is vertex transitive.

A complex of *clusters*

Definition

(*n*-clusters) A graph isomorphic to the 1-skeleton or an *n*-cube together with (possibly) additional *diagonal* 1-cells.

Definition

Let $\Box^n = [0,1]^n$ and $A \subseteq \{x_i = x_{i+1} \mid 1 \le i < n\}.$

(n-clusters) \square_A^n : the CW complex obtained by the intersection pattern of hyperplanes in A.

Theorem (L.) $G \rightharpoonup X$ satisfies:

Theorem (L.) $G \rightharpoonup X$ satisfies:

1. The stabilizers of cells are of type F_{∞} .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- (L.) G
 ightarrow X satisfies:
 - 1. The stabilizers of cells are of type F_{∞} .
 - 2. X/G has finitely many cells in each dimension.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

- (L.) G
 ightarrow X satisfies:
 - 1. The stabilizers of cells are of type F_{∞} .
 - 2. X/G has finitely many cells in each dimension.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

3. X is contractible.

- (L.) G
 ightarrow X satisfies:
 - 1. The stabilizers of cells are of type F_{∞} .
 - 2. X/G has finitely many cells in each dimension.
 - X is contractible.
 (Asphericity: For each finite subcomplex Y of X there is a non positively curved cube complex C and v₁ : Y → C, v₂ : C → X such that v₂ ∘ v₁ is the inclusion Y ↔ X.)

- (L.) G
 ightarrow X satisfies:
 - 1. The stabilizers of cells are of type F_{∞} .
 - 2. X/G has finitely many cells in each dimension.
- X is contractible.
 (Asphericity: For each finite subcomplex Y of X there is a non positively curved cube complex C and v₁ : Y → C, v₂ : C → X such that v₂ ∘ v₁ is the inclusion Y ↔ X.)
 It follows that G is of type F_∞.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(L.) G
ightarrow X satisfies:

- 1. The stabilizers of cells are of type F_{∞} .
- 2. X/G has finitely many cells in each dimension.

 X is contractible. (Asphericity: For each finite subcomplex Y of X there is a non positively curved cube complex C and v₁ : Y → C, v₂ : C → X such that v₂ ∘ v₁ is the inclusion Y → X.)
 It follows that G is of type F_∞.

This provides the first example of a group that is of type F_{∞} , nonamenable and does not contain F_2 . (Moreover, torsion free!)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Striking parallels with Thompson's group *F*.

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Striking parallels with Thompson's group *F*.

"Small" finite presentations.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Striking parallels with Thompson's group *F*.

- "Small" finite presentations.
- "Symmetric" infinite presentations and normal forms.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?
Striking parallels with Thompson's group *F*.

- "Small" finite presentations.
- "Symmetric" infinite presentations and normal forms.

• Torsion free, infinite dimensional and Type F_{∞} .

Striking parallels with Thompson's group *F*.

- "Small" finite presentations.
- "Symmetric" infinite presentations and normal forms.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Torsion free, infinite dimensional and Type F_{∞} .
- Tree diagrams.

Striking parallels with Thompson's group F.

- "Small" finite presentations.
- "Symmetric" infinite presentations and normal forms.
- Torsion free, infinite dimensional and Type F_{∞} .
- Tree diagrams.
- The commutator subgroup is simple and every proper quotient is abelian.

Some open questions.

• What is the Tarski number of G?

Some open questions.

- What is the Tarski number of G?
- Is there an explicit paradoxical decomposition for G that uses the normal form?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Some open questions.

- What is the Tarski number of G?
- Is there an explicit paradoxical decomposition for G that uses the normal form?
- The group $\langle t + \frac{1}{2}, b \rangle$ is non amenable. Is it finitely presented?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- What is the Tarski number of G?
- Is there an explicit paradoxical decomposition for *G* that uses the normal form?
- The group $\langle t + \frac{1}{2}, b \rangle$ is non amenable. Is it finitely presented?

What is the subgroup structure of the group of piecewise projective homeomorphisms?