Hamiltonian diffeomorphisms and persistence modules

Leonid Polterovich, Tel Aviv

Lyon, 2015, joint with Egor Shelukhin

Leonid Polterovich, Tel Aviv University Hamiltonian diffeomorphisms and persistence modules

同 ト イヨ ト イヨ ト

 (M^{2n}, ω) -symplectic manifold ω - symplectic form. Locally $\omega = \sum_{i=1}^{n} dp_i \wedge dq_i$.

 (M^{2n}, ω) -symplectic manifold ω - symplectic form. Locally $\omega = \sum_{i=1}^{n} dp_i \wedge dq_i$. Examples of closed symplectic manifolds:

- Surfaces with an area forms;
- Products.

-

 (M^{2n}, ω) -symplectic manifold ω - symplectic form. Locally $\omega = \sum_{i=1}^{n} dp_i \wedge dq_i$. Examples of closed symplectic manifolds:

- Surfaces with an area forms;
- Products.

M-phase space of mechanical system. **Energy determines evolution:** $F : M \times [0,1] \rightarrow \mathbb{R}$ – Hamiltonian function (energy). Hamiltonian system:

$$\begin{cases} \dot{q} = \frac{\partial F}{\partial p} \\ \dot{p} = -\frac{\partial F}{\partial q} \end{cases}$$

Family of Hamiltonian diffeomorphisms

$$f_t: M
ightarrow M, \ (p(0),q(0)) \mapsto (p(t),q(t))$$

イロト 不得 トイヨト イヨト 二日

 (M^{2n}, ω) -symplectic manifold ω - symplectic form. Locally $\omega = \sum_{i=1}^{n} dp_i \wedge dq_i$. Examples of closed symplectic manifolds:

- Surfaces with an area forms;
- Products.

M-phase space of mechanical system. **Energy determines evolution:** $F : M \times [0,1] \rightarrow \mathbb{R}$ – Hamiltonian function (energy). Hamiltonian system:

$$\begin{cases} \dot{q} = \frac{\partial F}{\partial p} \\ \dot{p} = -\frac{\partial F}{\partial q} \end{cases}$$

Family of Hamiltonian diffeomorphisms

$$f_t: M \rightarrow M, \ (p(0),q(0)) \mapsto (p(t),q(t))$$

Key feature: $\phi_t^* \omega = \omega$.

Hamiltonian diffeomorphisms

 (M, ω) -closed symplectic manifold. $Ham(M, \omega)$ - group of Hamiltonian diffeomorphisms.

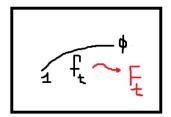
Ham \subset Symp₀. Ham = Symp₀ if $H^1(M, \mathbb{R}) = 0$.

Hamiltonian diffeomorphisms

 (M, ω) -closed symplectic manifold. $Ham(M, \omega)$ - group of Hamiltonian diffeomorphisms.

Ham \subset Symp₀. Ham = Symp₀ if $H^1(M, \mathbb{R}) = 0$. **Hofer's length:** For a Hamiltonian path $\alpha = \{f_t\}, f_0 = \mathbb{1}, f_1 = \phi$ length(α) = $\int_0^1 ||F_t|| dt$, where F_t - normalized (zero mean) Hamiltonian of α .

Figure: Path α



向下 イヨト イヨト

Put $d_H(\mathbb{1}, \phi) = \inf_{\alpha} \operatorname{length}(\alpha)$, where α -path between $\mathbb{1}$ and ϕ . $d_H(\phi, \psi) := d_H(\mathbb{1}, \phi \psi^{-1})$ - Hofer's metric, 1990

ヘロト ヘ部ト ヘヨト ヘヨト

Put $d_H(\mathbb{1}, \phi) = \inf_{\alpha} \operatorname{length}(\alpha)$, where α -path between $\mathbb{1}$ and ϕ . $d_H(\phi, \psi) := d_H(\mathbb{1}, \phi \psi^{-1})$ - Hofer's metric, 1990

- non-degenerate Hofer, P., Lalonde-McDuff
- biinvariant
- essentially unique non-degenerate Finsler metric on Ham associated to a Ham-invariant norm on the Lie algebra $C^{\infty}(M)_{normalized}$ Buhovsky-Ostrover, 2011

- (同) (回) (回) - 回

 (M, ω) -closed symplectic manifold, $k \ge 2$ - integer.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ... □

 (M, ω) -closed symplectic manifold, $k \ge 2$ - integer. Powers_k = { $\phi = \psi^k | \psi \in Ham$ }- Hamiltonian diffeomorphisms admitting a root of order k.

-

 (M, ω) -closed symplectic manifold, $k \ge 2$ - integer. Powers_k = { $\phi = \psi^k | \psi \in Ham$ }- Hamiltonian diffeomorphisms admitting a root of order k.

$$p_k(M,\omega) := \sup_{\phi \in Ham} d(\phi, \operatorname{Powers}_k).$$

-

 (M, ω) -closed symplectic manifold, $k \ge 2$ - integer. Powers_k = { $\phi = \psi^k | \psi \in Ham$ }- Hamiltonian diffeomorphisms admitting a root of order k.

$$p_k(M,\omega) := \sup_{\phi \in Ham} d(\phi, \operatorname{Powers}_k).$$

Theorem (P.-Shelukhin)

Let Σ be a closed oriented surface of genus \geq 4 equipped with an area form σ , and $k \geq 2$ an integer. Then for every closed symplectic manifold (M, ω) with $\pi_2(M) = 0$

$$p_k(\Sigma imes M, \sigma \oplus \omega) = +\infty$$
.

- 4 同 6 4 日 6 4 日 6

Corollary: There exists a sequence $\phi_i \in Ham(\Sigma \times M)$: $d(\phi_i, \text{Autonomous}) \to \infty$ as $i \to \infty$. Indeed, every autonomous diffeomorphism admits *k*-th root.

Corollary: There exists a sequence $\phi_i \in Ham(\Sigma \times M)$: $d(\phi_i, \text{Autonomous}) \to \infty$ as $i \to \infty$. Indeed, every autonomous diffeomorphism admits k-th root.

Tools: Come from Floer theory

Corollary: There exists a sequence $\phi_i \in Ham(\Sigma \times M)$: $d(\phi_i, \text{Autonomous}) \to \infty$ as $i \to \infty$. Indeed, every autonomous diffeomorphism admits *k*-th root.

Tools: Come from Floer theory

Remark: Our tools look more general than an example we can construct.

イロト 不得 トイヨト イヨト 二日

Corollary: There exists a sequence $\phi_i \in Ham(\Sigma \times M)$: $d(\phi_i, \text{Autonomous}) \to \infty$ as $i \to \infty$. Indeed, every autonomous diffeomorphism admits *k*-th root.

Tools: Come from Floer theory

Remark: Our tools look more general than an example we can construct.

Idea of example: In 2D, autonomous = integrable = deterministic. Thus look for ϕ_i among chaotic!

イロト 不得 トイヨト イヨト 二日

Hamiltonian egg-beater

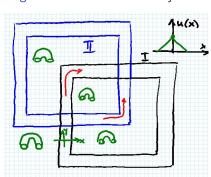


Figure: For Étienne's birthday cake

Two annuli on the plane, four handles. $\phi_{\lambda} = f_{\lambda}^{I} f_{\lambda}^{II}$, where $f_{\lambda}(x, y) = (x, y + \lambda u(x))$ - shear motion, λ -large parameter. Franjione-Ottini, 1992 (chaos in duct flows as $\lambda \to \infty$), buzz word-linked twist map. Work with periodic orbits in special classes of loops on Σ depending on λ;

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Work with periodic orbits in special classes of loops on Σ depending on λ;
- Handles are needed to separate periodic orbits. Our example fails on 2-sphere (Misha Khanevsky);

< ロ > < 同 > < 回 > < 回 > < □ > <

- Work with periodic orbits in special classes of loops on Σ depending on λ;
- Handles are needed to separate periodic orbits. Our example fails on 2-sphere (Misha Khanevsky);
- $\phi_{\lambda} \times 1$ does the job for $\Sigma \times M$: our invariant survives stabilization by dimension.

イロト 不得 トイヨト イヨト 二日

Motivation: dynamics

Vector fields generate few diffeomorphisms, Palis, 1973

< □ > < □ > < □ >

Vector fields generate few diffeomorphisms, Palis, 1973 *M*-symplectically aspherical \Rightarrow *Ham* \ *Autonomous* contains C^{∞} -dense open set (essentially Ginzburg-Gurel).

同 ト イヨ ト イヨ ト

Motivation: dynamics

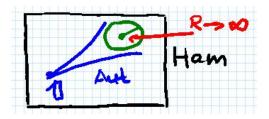
Vector fields generate few diffeomorphisms, Palis, 1973 *M*-symplectically aspherical \Rightarrow *Ham* \ *Autonomous* contains C^{∞} -dense open set (essentially Ginzburg-Gurel). Our methods upgrade C^{∞} -open to Hofer-open.

同 ト イヨ ト イヨ ト

Motivation: dynamics

Vector fields generate few diffeomorphisms, Palis, 1973 *M*-symplectically aspherical \Rightarrow *Ham* \ *Autonomous* contains C^{∞} -dense open set (essentially Ginzburg-Gurel). Our methods upgrade C^{∞} -open to Hofer-open. Main theorem provides a metric take on this phenomenon: *Ham* \ *Autonomous* contains arbitrarily large Hofer ball.

Figure: Complement to Autonomous



/□ ▶ < 글 ▶ < 글

 $\phi \in Ham$, $d_A(\mathbb{1}, \phi) := \min N$ such that ϕ is product of N autonomous diffeomorphisms.

★@> ★ E> ★ E> = E

 $\phi \in Ham$, $d_A(\mathbb{1}, \phi) := \min N$ such that ϕ is product of N autonomous diffeomorphisms.

This metric known to be unbounded on surfaces.

 $\phi \in Ham$, $d_A(\mathbb{1}, \phi) := \min N$ such that ϕ is product of N autonomous diffeomorphisms.

This metric known to be unbounded on surfaces.

Introduced and studied in a seminal paper by J.-M. Gambaudo and E. Ghys, "Commutators and diffeomorphisms of surfaces", 2004.

(1日) (日) (日) (日) 日

 $\phi \in Ham$, $d_A(\mathbb{1}, \phi) := \min N$ such that ϕ is product of N autonomous diffeomorphisms.

This metric known to be unbounded on surfaces.

Introduced and studied in a seminal paper by J.-M. Gambaudo and E. Ghys, "Commutators and diffeomorphisms of surfaces", 2004.

Further studied by M. Brandenbursky, J. Kedra, E. Shelukhin.

- (日本) (日本) (日本) (日本)

This metric known to be unbounded on surfaces.

Introduced and studied in a seminal paper by J.-M. Gambaudo and E. Ghys, "Commutators and diffeomorphisms of surfaces", 2004.

Further studied by M. Brandenbursky, J. Kedra, E. Shelukhin.

Problem: Explore geometry of the sphere $S_A(r)$ in Hofer's metric.

イロト 不得 とうせい かほとう ほ

This metric known to be unbounded on surfaces.

Introduced and studied in a seminal paper by J.-M. Gambaudo and E. Ghys, "Commutators and diffeomorphisms of surfaces", 2004.

Further studied by M. Brandenbursky, J. Kedra, E. Shelukhin.

Problem: Explore geometry of the sphere $S_A(r)$ in Hofer's metric.

Our main theorem states that $Ham \setminus S_A(1)$ contains an arbitrarily large Hofer ball.

This metric known to be unbounded on surfaces.

Introduced and studied in a seminal paper by J.-M. Gambaudo and E. Ghys, "Commutators and diffeomorphisms of surfaces", 2004.

Further studied by M. Brandenbursky, J. Kedra, E. Shelukhin.

Problem: Explore geometry of the sphere $S_A(r)$ in Hofer's metric.

Our main theorem states that $Ham \setminus S_A(1)$ contains an arbitrarily large Hofer ball.

What about $Ham \setminus S_A(2)$?

This metric known to be unbounded on surfaces.

Introduced and studied in a seminal paper by J.-M. Gambaudo and E. Ghys, "Commutators and diffeomorphisms of surfaces", 2004.

Further studied by M. Brandenbursky, J. Kedra, E. Shelukhin.

Problem: Explore geometry of the sphere $S_A(r)$ in Hofer's metric.

Our main theorem states that $Ham \setminus S_A(1)$ contains an arbitrarily large Hofer ball.

What about $Ham \setminus S_A(2)$?

Note that our eggbeaters belong to $S_A(2)$, i.e., are products of two autonomous. Currently out of reach.

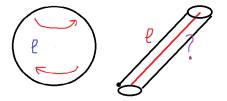
Theorem: C^{∞} -generic Hamiltonian generates a one parameter subgroup f_t with $d_H(\mathbb{1}, f_t) \sim t$. (P.-Rosen, 2014).

- (同) (回) (回) - 回

Theorem: C^{∞} -generic Hamiltonian generates a one parameter subgroup f_t with $d_H(\mathbb{1}, f_t) \sim t$. (P.-Rosen, 2014).

Open problem: Fix such a subgroup ℓ on 2-sphere. Is it true that *Ham* lies in a tube of radius 100 around ℓ ? (P.-M.Kapovich, 2006).

Figure: Quasi-geodesic ℓ

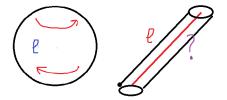


伺 ト イ ヨ ト イ ヨ

Theorem: C^{∞} -generic Hamiltonian generates a one parameter subgroup f_t with $d_H(\mathbb{1}, f_t) \sim t$. (P.-Rosen, 2014).

Open problem: Fix such a subgroup ℓ on 2-sphere. Is it true that *Ham* lies in a tube of radius 100 around ℓ ? (P.-M.Kapovich, 2006).

Figure: Quasi-geodesic ℓ



Main theorem shows that this is not the case for $\Sigma \times M$.

Motivation: Milnor's constraint

 $\phi \in \text{Diff}(M)$. If $\phi = \psi^2$, the number of primitive geometrically distinct 2-periodic orbits of ϕ is even. (Milnor, 1983; Albers-Frauenfelder, 2014).

Motivation: Milnor's constraint

 $\phi \in \text{Diff}(M)$. If $\phi = \psi^2$, the number of primitive geometrically distinct 2-periodic orbits of ϕ is even. (Milnor, 1983; Albers-Frauenfelder, 2014).

Indeed, ψ induces a free action on the set of such orbits.

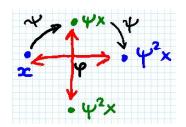


Figure: 2-periodic orbits of $\phi = \psi^2$

伺 ト イ ヨ ト イ ヨ

Motivation: Milnor's constraint

 $\phi \in \text{Diff}(M)$. If $\phi = \psi^2$, the number of primitive geometrically distinct 2-periodic orbits of ϕ is even. (Milnor, 1983; Albers-Frauenfelder, 2014).

Indeed, ψ induces a free action on the set of such orbits.

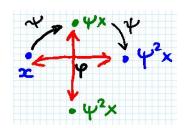


Figure: 2-periodic orbits of $\phi = \psi^2$

Our invariant involves parity of the dimension of certain spaces generated by 2-periodic orbits of ϕ arising in Floer theory.

Leonid Polterovich, Tel Aviv University Hamiltonian diffeomorphisms and persistence modules

Barcodes

Edelsbrunner, Harer, Carlsson,... Last decade in the context of topological data analysis.

Barcode $\mathcal{B} = \{I_j, m_j\}$ -finite collection of intervals I_j with multiplicities m_j , $I_j = (a_j, b_j]$, $a_j < b_j \le +\infty$.

・同・ ・ヨ・ ・ヨ・ ・ヨ

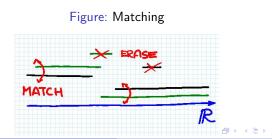
Barcodes

Edelsbrunner, Harer, Carlsson,... Last decade in the context of topological data analysis.

Barcode $\mathcal{B} = \{I_j, m_j\}$ -finite collection of intervals I_j with multiplicities m_j , $I_j = (a_j, b_j]$, $a_j < b_j \le +\infty$.

Bottleneck distance between barcodes: \mathcal{B}, \mathcal{C} are δ -matched, $\delta > 0$ if after erasing some intervals in \mathcal{B} and \mathcal{C} of length $< 2\delta$ we can match the rest in 1-to-1 manner with error at most δ at each end-point.

$$d_{bot}(\mathcal{B},\mathcal{C}) = \inf \delta$$
 .



Hamiltonian diffeomorphisms and persistence modules

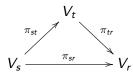
Persistence modules

 \mathcal{F} – a field.

イロト イロト イヨト イヨト 三日

 \mathcal{F} – a field.

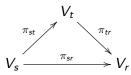
Persistence module: a pair (V, π) , where V_t , $t \in \mathbb{R}$ are \mathcal{F} -vector spaces, dim $V_t < \infty$, $V_s = 0$ for all $s \ll 0$. $\pi_{st} : V_s \to V_t$, s < t linear maps: $\forall s < t < r$



/□ ▶ < 글 ▶ < 글

 \mathcal{F} – a field.

Persistence module: a pair (V, π) , where V_t , $t \in \mathbb{R}$ are \mathcal{F} -vector spaces, dim $V_t < \infty$, $V_s = 0$ for all $s \ll 0$. $\pi_{st} : V_s \to V_t$, s < t linear maps: $\forall s < t < r$

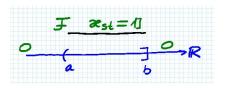


Regularity: For all but finite number of jump points $t \in \mathbb{R}$, there exists a neighborhood U of t such that π_{sr} is an isomorphism for all $s, r \in U$. Extra assumption ("semicontinuity") at jump points.

- 4 同 2 4 日 2 4 日 2 4

Structure theorem

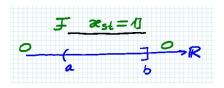
Interval module $(Q(a, b], \kappa), a \in \mathbb{R}, b \in \mathbb{R} \cup +\infty$: $Q(a, b]_t = \mathcal{F}$ for $t \in (a, b]$ and $Q(a, b]_t = 0$ otherwise; $\kappa_{st} = 1$ for $s, t \in (a, b]$ and $\kappa_{st} = 0$ otherwise.



・ 同 ト ・ ヨ ト ・ ヨ ト

Structure theorem

Interval module $(Q(a, b], \kappa), a \in \mathbb{R}, b \in \mathbb{R} \cup +\infty$: $Q(a, b]_t = \mathcal{F}$ for $t \in (a, b]$ and $Q(a, b]_t = 0$ otherwise; $\kappa_{st} = \mathbb{1}$ for $s, t \in (a, b]$ and $\kappa_{st} = 0$ otherwise.



Structure theorem: For every persistence module (V, π) there exists unique barcode $\mathcal{B}(V) = \{(I_i, m_i)\}$ such that $V = \bigoplus Q(I_i)^{m_i}$.

(日)

Example: Morse theory

X-closed manifold, $f : X \to \mathbb{R}$ -Morse function.

・ロト ・四ト ・ヨト ・ヨト

Example: Morse theory

X-closed manifold, $f : X \to \mathbb{R}$ -Morse function. Persistence module $V_t(f) := H_*(\{f < t\}, \mathcal{F})$. The persistence morphisms are induced by the inclusions $\{f < s\} \hookrightarrow \{f < t\}, s < t$.

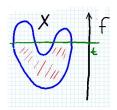


Figure: Sublevels

< 同 > < 回 > < 回 >

Example: Morse theory

X-closed manifold, $f : X \to \mathbb{R}$ -Morse function. Persistence module $V_t(f) := H_*(\{f < t\}, \mathcal{F})$. The persistence morphisms are induced by the inclusions $\{f < s\} \hookrightarrow \{f < t\}, s < t$.

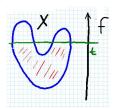


Figure: Sublevels

Robustness: $||f|| := \max |f|$ -uniform norm. $(C^{\infty}(X), || \cdot ||) \rightarrow (Barcodes, d_{bot}), f \mapsto \mathcal{B}(V(f))$ is Lipshitz.

伺い イヨト イヨト

Morse homology

f-Morse function, ρ -generic metric.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

f-Morse function, ρ -generic metric. **Complex:** $C_t = \mathcal{F} \cdot \operatorname{Crit}_t(f)$ - span of critical points x of f with value f(x) < t.

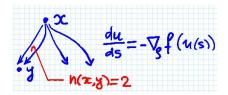
(4回) (4日) (4日)

-

Morse homology

f-Morse function, ρ -generic metric. **Complex:** $C_t = \mathcal{F} \cdot \operatorname{Crit}_t(f)$ - span of critical points x of f with value f(x) < t. **Differential:** $d : C_t \to C_t$, $dx = \sum n(x, y)y$, where n(x, y)-number of gradient lines of f connecting x and y.

Figure: Differential



(4月) (日) (日)

LM- space of contractible loops $z: S^1 \to M$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

LM- space of contractible loops $z : S^1 \rightarrow M$ F(x, t)- 1-periodic Hamiltonian, $\phi_F \in Ham$ - time one map

- (同) (回) (回) - 回

LM- space of contractible loops $z : S^1 \to M$ F(x, t)- 1-periodic Hamiltonian, $\phi_F \in Ham$ - time one map **Action functional:** $\mathcal{A}_F(z) : LM \to \mathbb{R}, \ z \mapsto \int_0^1 F(z(t), t) dt - \int_D \omega$ *D*-disc spanning *z*

(4月) (日) (日) 日

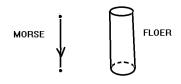
LM- space of contractible loops $z: S^1 \to M$ F(x, t)- 1-periodic Hamiltonian, $\phi_F \in Ham$ - time one map **Action functional:** $\mathcal{A}_F(z) : LM \to \mathbb{R}, z \mapsto \int_0^1 F(z(t), t) dt - \int_D \omega$ D-disc spanning z

Critical points: 1-periodic orbits of Hamiltonian flow

・同・ ・ヨ・ ・ヨ・ ・ヨ

LM- space of contractible loops $z : S^1 \to M$ F(x, t)- 1-periodic Hamiltonian, $\phi_F \in Ham$ - time one map **Action functional:** $\mathcal{A}_F(z) : LM \to \mathbb{R}, z \mapsto \int_0^1 F(z(t), t)dt - \int_D \omega$ *D*-disc spanning *z* **Critical points:** 1-periodic orbits of Hamiltonian flow **Gradient equation:** Cauchy-Riemann (Gromov's theory, 1985) Gradient lines connecting critical points – **Fredholm problem**

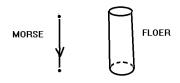
Figure: Gradient lines:



- (同) (回) (回) - 回

LM- space of contractible loops $z : S^1 \to M$ F(x, t)- 1-periodic Hamiltonian, $\phi_F \in Ham$ - time one map **Action functional:** $\mathcal{A}_F(z) : LM \to \mathbb{R}, z \mapsto \int_0^1 F(z(t), t)dt - \int_D \omega$ *D*-disc spanning *z* **Critical points:** 1-periodic orbits of Hamiltonian flow **Gradient equation:** Cauchy-Riemann (Gromov's theory, 1985) Gradient lines connecting critical points – **Fredholm problem**

Figure: Gradient lines:



Count of connecting lines: Floer homology HF

Leonid Polterovich, Tel Aviv University Hamiltonian diffeomorphisms and persistence modules

For $s \in \mathbb{R}$ get family of vector spaces $HF(\{A_F < s\})$ with natural morphisms (as in Morse theory).

・ 同 ト ・ ヨ ト ・ ヨ ト

-

For $s \in \mathbb{R}$ get family of vector spaces $HF(\{A_F < s\})$ with natural morphisms (as in Morse theory). Under certain assumptions on (M, ω) (apsherical, atoroidal,...)

• the module depends only on the time one map $\phi \in Ham(M, \omega)$ of the Hamiltonian flow of F.

For $s \in \mathbb{R}$ get family of vector spaces $HF(\{A_F < s\})$ with natural morphisms (as in Morse theory).

Under certain assumptions on (M, ω) (apsherical, atoroidal,...)

- the module depends only on the time one map $\phi \in Ham(M, \omega)$ of the Hamiltonian flow of F.
- There exists a version of Floer persistence module $HF(\phi)_{\alpha}$ built on non-contractible closed orbits in the free homotopy class α .

イロト 不得 トイヨト イヨト 二日

The map $(\mathit{Ham}, \mathit{d_{Hofer}}) ightarrow (\mathsf{Barcodes}, \mathit{d_{bot}})$,

 $\phi \mapsto \mathcal{B}(\text{persist. module associated to Floer theory of }\phi)$ is Lipschitz!

- 4 同 6 4 日 6 4 日 6

The map $(Ham, d_{Hofer}) \rightarrow (Barcodes, d_{bot})$,

 $\phi \mapsto \mathcal{B}(\text{persist. module associated to Floer theory of }\phi)$

is Lipschitz!

Numerical invariants of Hamiltonian diffeomorphisms come from Lipschitz functions on barcodes. (P.-Shelukhin, Usher-Zhang, 2015)

< ロ > < 同 > < 回 > < 回 > < □ > <

-

Example: stable multiplicity

B-barcode. For a finite interval I = (a, b] put $I^c = (a + c, b - c]$.

< ロ > < 同 > < 回 > < 回 > < □ > <

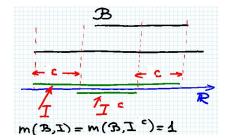
Example: stable multiplicity

B-barcode. For a finite interval I = (a, b] put $I^c = (a + c, b - c]$. m(B, I)- number of finite bars containing I.

▲圖→ ▲屋→ ▲屋→

Example: stable multiplicity

 \mathcal{B} -barcode. For a finite interval I = (a, b] put $I^c = (a + c, b - c]$. $m(\mathcal{B}, I)$ - number of finite bars containing I. $\mu_2(\mathcal{B}) := \sup c$ such that $\exists I$ of length > 2c with $m(\mathcal{B}, I) = m(\mathcal{B}, I^c) =$ odd.



- 4 同 6 4 日 6 4 日 6

Field $\mathcal{F} = \mathbb{Q}$. Consider \mathbb{Z}_2 -action $T : HF(\phi^2) \to HF(\phi^2)$ induced by the conjugation $\phi \phi^2 \phi^{-1} = \phi^2$.

Field $\mathcal{F} = \mathbb{Q}$. Consider \mathbb{Z}_2 -action $T : HF(\phi^2) \to HF(\phi^2)$ induced by the conjugation $\phi \phi^2 \phi^{-1} = \phi^2$.

Define $L(\phi) \subset HF(\phi^2)$ as (-1)-eigenvalue of T.

Field $\mathcal{F} = \mathbb{Q}$. Consider \mathbb{Z}_2 -action $T : HF(\phi^2) \to HF(\phi^2)$ induced by the conjugation $\phi \phi^2 \phi^{-1} = \phi^2$.

Define $L(\phi) \subset HF(\phi^2)$ as (-1)-eigenvalue of T.

 $L(\phi)$ -persistence module, $\phi \mapsto \mathcal{B}(L(\phi))$ - Lipshitz.

Field $\mathcal{F} = \mathbb{Q}$. Consider \mathbb{Z}_2 -action $T : HF(\phi^2) \to HF(\phi^2)$ induced by the conjugation $\phi \phi^2 \phi^{-1} = \phi^2$. Define $L(\phi) \subset HF(\phi^2)$ as (-1)-eigenvalue of T. $L(\phi)$ -persistence module, $\phi \mapsto \mathcal{B}(L(\phi))$ - Lipshitz.

Put $\mu_2(\phi) := \mu_2(\mathcal{B}(L(\phi))).$

イロト 不得 とくほ とくほ とうほう

Field $\mathcal{F} = \mathbb{Q}$. Consider \mathbb{Z}_2 -action $T : HF(\phi^2) \to HF(\phi^2)$ induced by the conjugation $\phi \phi^2 \phi^{-1} = \phi^2$. Define $L(\phi) \subset HF(\phi^2)$ as (-1)-eigenvalue of T. $L(\phi)$ -persistence module, $\phi \mapsto \mathcal{B}(L(\phi))$ - Lipshitz. Put $\mu_2(\phi) := \mu_2(\mathcal{B}(L(\phi)))$. Claim: $\mu_2(\psi^2) = 0$.

イロト 不得 とうせい かほとう ほ

Field $\mathcal{F} = \mathbb{Q}$. Consider \mathbb{Z}_2 -action $T : HF(\phi^2) \to HF(\phi^2)$ induced by the conjugation $\phi \phi^2 \phi^{-1} = \phi^2$. **Define** $L(\phi) \subset HF(\phi^2)$ as (-1)-eigenvalue of T. $L(\phi)$ -persistence module, $\phi \mapsto \mathcal{B}(L(\phi))$ - Lipshitz. **Put** $\mu_2(\phi) := \mu_2(\mathcal{B}(L(\phi))).$ **Claim:** $\mu_2(\psi^2) = 0.$ **Proof:** ψ induces action $S: L(\psi^2) \to L(\psi^2)$ with $S^2 = T = -\mathbb{1}$. Thus multiplicity of each bar in $L(\psi^2)$ is even.

イロト 不得 とうせい かほとう ほ

Field $\mathcal{F} = \mathbb{Q}$. Consider \mathbb{Z}_2 -action $T : HF(\phi^2) \to HF(\phi^2)$ induced by the conjugation $\phi \phi^2 \phi^{-1} = \phi^2$. **Define** $L(\phi) \subset HF(\phi^2)$ as (-1)-eigenvalue of T. $L(\phi)$ -persistence module, $\phi \mapsto \mathcal{B}(L(\phi))$ - Lipshitz. **Put** $\mu_2(\phi) := \mu_2(\mathcal{B}(L(\phi))).$ **Claim:** $\mu_2(\psi^2) = 0.$ **Proof:** ψ induces action $S: L(\psi^2) \to L(\psi^2)$ with $S^2 = T = -\mathbb{1}$. Thus multiplicity of each bar in $L(\psi^2)$ is even.

Corollary: $d_H(\phi, \psi^2) \ge C \cdot \mu_2(\phi)$.

Field $\mathcal{F} = \mathbb{Q}$. Consider \mathbb{Z}_2 -action $T : HF(\phi^2) \to HF(\phi^2)$ induced by the conjugation $\phi \phi^2 \phi^{-1} = \phi^2$. **Define** $L(\phi) \subset HF(\phi^2)$ as (-1)-eigenvalue of T. $L(\phi)$ -persistence module, $\phi \mapsto \mathcal{B}(L(\phi))$ - Lipshitz. **Put** $\mu_2(\phi) := \mu_2(\mathcal{B}(L(\phi))).$ **Claim:** $\mu_2(\psi^2) = 0.$ **Proof:** ψ induces action $S: L(\psi^2) \to L(\psi^2)$ with $S^2 = T = -1$. Thus multiplicity of each bar in $L(\psi^2)$ is even.

Corollary: $d_H(\phi, \psi^2) \ge C \cdot \mu_2(\phi)$.

This is key tool for the main theorem.

 $\phi \in \text{Diff}(M)$. If $\phi = \psi^2$, the number of primitive geometrically distinct 2-periodic orbits of ϕ is even. (Milnor, 1983; Albers-Frauenfelder, 2014).

 $\phi \in \text{Diff}(M)$. If $\phi = \psi^2$, the number of primitive geometrically distinct 2-periodic orbits of ϕ is even. (Milnor, 1983; Albers-Frauenfelder, 2014).

Our invariant μ (stable multiplicity) involves parity of the dimension of certain spaces generated by 2-periodic orbits of ϕ .

- (目) (日) (日) (日) (日)

 $\phi \in \text{Diff}(M)$. If $\phi = \psi^2$, the number of primitive geometrically distinct 2-periodic orbits of ϕ is even. (Milnor, 1983; Albers-Frauenfelder, 2014).

Our invariant μ (stable multiplicity) involves parity of the dimension of certain spaces generated by 2-periodic orbits of ϕ .

But the filtration by action functional is crucial: eggbeater $\phi = f' \circ f''$ with $f'' = Jf'J^{-1}$, where $J^2 = 1$ -orientation reversing measure-preserving involution, so $\phi = (f'J)^2$. Here J flips the annuli.

イロト 不得 トイヨト イヨト 二日

CONGRATULATIONS TO Étienne!

Leonid Polterovich, Tel Aviv University Hamiltonian diffeomorphisms and persistence modules