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Symplectic preliminaries

(M2n, ω)–symplectic manifold
ω– symplectic form. Locally ω =

∑n
i=1 dpi ∧ dqi .

Examples of closed symplectic manifolds:

Surfaces with an area forms;

Products.

M-phase space of mechanical system. Energy determines
evolution: F : M × [0, 1]→ R – Hamiltonian function (energy).
Hamiltonian system: {

q̇ = ∂F
∂p

ṗ = −∂F
∂q

Family of Hamiltonian diffeomorphisms

ft : M → M, (p(0), q(0)) 7→ (p(t), q(t))

Key feature: φ∗tω = ω.
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Hamiltonian diffeomorphisms

(M, ω)-closed symplectic manifold. Ham (M, ω) - group of
Hamiltonian diffeomorphisms.
Ham ⊂ Symp0. Ham = Symp0 if H1(M,R) = 0.

Hofer’s length: For a Hamiltonian path α = {ft}, f0 = 1l, f1 = φ

length(α) =
∫ 1

0 ||Ft || dt, where Ft - normalized (zero mean)
Hamiltonian of α.

Figure: Path α
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Hofer’s metric

Put dH(1l, φ) = infα length(α), where α-path between 1l and φ.
dH(φ, ψ) := dH(1l, φψ−1) - Hofer’s metric, 1990

non-degenerate Hofer, P., Lalonde-McDuff

biinvariant

essentially unique non-degenerate Finsler metric on Ham
associated to a Ham-invariant norm on the Lie algebra
C∞(M)normalized Buhovsky-Ostrover, 2011
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Main Theorem

(M, ω)-closed symplectic manifold, k ≥ 2 - integer.

Powersk = {φ = ψk | ψ ∈ Ham }- Hamiltonian diffeomorphisms
admitting a root of order k.

pk(M, ω) := sup
φ∈Ham

d(φ,Powersk) .

.

Theorem (P.-Shelukhin)

Let Σ be a closed oriented surface of genus ≥ 4 equipped with an
area form σ, and k ≥ 2 an integer. Then for every closed
symplectic manifold (M, ω) with π2(M) = 0

pk(Σ×M, σ ⊕ ω) = +∞ .
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Discussion

Conjecture: pk = +∞ for all closed symplectic manifolds.

Corollary: There exists a sequence φi ∈ Ham (Σ×M) :
d(φi ,Autonomous)→∞ as i →∞.
Indeed, every autonomous diffeomorphism admits k-th root.

Tools: Come from Floer theory

Remark: Our tools look more general than an example we can
construct.

Idea of example: In 2D, autonomous = integrable = deterministic.
Thus look for φi among chaotic!
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Hamiltonian egg-beater

Figure: For Étienne’s birthday cake

Two annuli on the plane, four handles. φλ = f Iλ f
II
λ , where

fλ(x , y) = (x , y + λu(x)) - shear motion, λ-large parameter.
Franjione-Ottini, 1992 (chaos in duct flows as λ→∞), buzz word-
linked twist map .
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Remarks

Work with periodic orbits in special classes of loops on Σ
depending on λ;

Handles are needed to separate periodic orbits. Our example
fails on 2-sphere (Misha Khanevsky);

φλ × 1l does the job for Σ×M: our invariant survives
stabilization by dimension.
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Motivation: dynamics

Vector fields generate few diffeomorphisms, Palis, 1973

M-symplectically aspherical ⇒ Ham \ Autonomous contains
C∞-dense open set (essentially Ginzburg-Gurel).
Our methods upgrade C∞-open to Hofer-open .
Main theorem provides a metric take on this phenomenon:
Ham \ Autonomous contains arbitrarily large Hofer ball.

Figure: Complement to Autonomous
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Motivation: autonomous metric

φ ∈ Ham , dA(1l, φ) := minN such that φ is product of N
autonomous diffeomorphisms.

This metric known to be unbounded on surfaces.

Introduced and studied in a seminal paper by J.-M. Gambaudo and
E. Ghys, “Commutators and diffeomorphisms of surfaces”, 2004.

Further studied by M. Brandenbursky, J. Kedra, E. Shelukhin.

Problem: Explore geometry of the sphere SA(r) in Hofer’s metric.

Our main theorem states that Ham \ SA(1) contains an arbitrarily
large Hofer ball.

What about Ham \ SA(2) ?

Note that our eggbeaters belong to SA(2), i.e., are products of two
autonomous. Currently out of reach.
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Motivation: coarse geometry of Ham

Theorem: C∞-generic Hamiltonian generates a one parameter
subgroup ft with dH(1l, ft) ∼ t. (P.-Rosen, 2014).

Open problem: Fix such a subgroup ` on 2-sphere. Is it true that
Ham lies in a tube of radius 100 around `? (P.-M.Kapovich, 2006).

Figure: Quasi-geodesic `

Main theorem shows that this is not the case for Σ×M.

Leonid Polterovich, Tel Aviv University Hamiltonian diffeomorphisms and persistence modules



Motivation: coarse geometry of Ham

Theorem: C∞-generic Hamiltonian generates a one parameter
subgroup ft with dH(1l, ft) ∼ t. (P.-Rosen, 2014).

Open problem: Fix such a subgroup ` on 2-sphere. Is it true that
Ham lies in a tube of radius 100 around `? (P.-M.Kapovich, 2006).

Figure: Quasi-geodesic `

Main theorem shows that this is not the case for Σ×M.

Leonid Polterovich, Tel Aviv University Hamiltonian diffeomorphisms and persistence modules



Motivation: coarse geometry of Ham

Theorem: C∞-generic Hamiltonian generates a one parameter
subgroup ft with dH(1l, ft) ∼ t. (P.-Rosen, 2014).

Open problem: Fix such a subgroup ` on 2-sphere. Is it true that
Ham lies in a tube of radius 100 around `? (P.-M.Kapovich, 2006).

Figure: Quasi-geodesic `

Main theorem shows that this is not the case for Σ×M.

Leonid Polterovich, Tel Aviv University Hamiltonian diffeomorphisms and persistence modules



Motivation: Milnor’s constraint

φ ∈ Diff(M). If φ = ψ2, the number of primitive geometrically
distinct 2-periodic orbits of φ is even. (Milnor, 1983;
Albers-Frauenfelder, 2014).

Indeed, ψ induces a free action on the set of such orbits.

Figure: 2-periodic orbits of φ = ψ2

Our invariant involves parity of the dimension of certain spaces
generated by 2-periodic orbits of φ arising in Floer theory.
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Barcodes

Edelsbrunner, Harer, Carlsson,... Last decade in the context of
topological data analysis.
Barcode B = {Ij ,mj}-finite collection of intervals Ij with
multiplicities mj , Ij = (aj , bj ], aj < bj ≤ +∞.

Bottleneck distance between barcodes: B, C are δ-matched ,
δ > 0 if after erasing some intervals in B and C of length < 2δ we
can match the rest in 1-to-1 manner with error at most δ at each
end-point.

dbot(B, C) = inf δ .

Figure: Matching
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Persistence modules

F – a field.

Persistence module: a pair (V , π), where Vt , t ∈ R are F-vector
spaces, dimVt <∞, Vs = 0 for all s � 0.
πst : Vs → Vt , s < t linear maps: ∀s < t < r

Vt

πtr

  
Vs

πst
>>

πsr // Vr

Regularity: For all but finite number of jump points t ∈ R, there
exists a neighborhood U of t such that πsr is an isomorphism for
all s, r ∈ U. Extra assumption (”semicontinuity”) at jump points.
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Structure theorem

Interval module (Q(a, b], κ), a ∈ R, b ∈ R ∪+∞:
Q(a, b]t = F for t ∈ (a, b] and Q(a, b]t = 0 otherwise;
κst = 1l for s, t ∈ (a, b] and κst = 0 otherwise.

Figure: Interval module

Structure theorem: For every persistence module (V , π) there
exists unique barcode B(V ) = {(Ij ,mj)} such that V = ⊕Q(Ij)

mj .
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Example: Morse theory

X -closed manifold, f : X → R-Morse function.

Persistence module Vt(f ) := H∗({f < t},F). The persistence
morphisms are induced by the inclusions
{f < s} ↪→ {f < t}, s < t.

Figure: Sublevels

Robustness: ||f || := max |f |-uniform norm.
(C∞(X ), || · ||)→ (Barcodes, dbot), f 7→ B(V (f )) is Lipshitz.

Leonid Polterovich, Tel Aviv University Hamiltonian diffeomorphisms and persistence modules



Example: Morse theory

X -closed manifold, f : X → R-Morse function.
Persistence module Vt(f ) := H∗({f < t},F). The persistence
morphisms are induced by the inclusions
{f < s} ↪→ {f < t}, s < t.

Figure: Sublevels

Robustness: ||f || := max |f |-uniform norm.
(C∞(X ), || · ||)→ (Barcodes, dbot), f 7→ B(V (f )) is Lipshitz.

Leonid Polterovich, Tel Aviv University Hamiltonian diffeomorphisms and persistence modules



Example: Morse theory

X -closed manifold, f : X → R-Morse function.
Persistence module Vt(f ) := H∗({f < t},F). The persistence
morphisms are induced by the inclusions
{f < s} ↪→ {f < t}, s < t.

Figure: Sublevels

Robustness: ||f || := max |f |-uniform norm.
(C∞(X ), || · ||)→ (Barcodes, dbot), f 7→ B(V (f )) is Lipshitz.

Leonid Polterovich, Tel Aviv University Hamiltonian diffeomorphisms and persistence modules



Morse homology

f -Morse function, ρ-generic metric.

Complex: Ct = F · Critt(f ) - span of critical points x of f with
value f (x) < t.
Differential: d : Ct → Ct , dx =

∑
n(x , y)y , where

n(x , y)-number of gradient lines of f connecting x and y .

Figure: Differential
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Floer theory (1988-...)

LM- space of contractible loops z : S1 → M

F (x , t)- 1-periodic Hamiltonian, φF ∈ Ham - time one map

Action functional: AF (z) : LM → R, z 7→
∫ 1

0 F (z(t), t)dt −
∫
D ω

D-disc spanning z
Critical points: 1-periodic orbits of Hamiltonian flow
Gradient equation: Cauchy-Riemann (Gromov’s theory, 1985)
Gradient lines connecting critical points – Fredholm problem

Figure: Gradient lines:

Count of connecting lines: Floer homology HF
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Floer persistence module

For s ∈ R get family of vector spaces HF ({AF < s}) with natural
morphisms (as in Morse theory).

Under certain assumptions on (M, ω) (apsherical, atoroidal,...)

the module depends only on the time one map
φ ∈ Ham (M, ω) of the Hamiltonian flow of F .

There exists a version of Floer persistence module HF (φ)α
built on non-contractible closed orbits in the free homotopy
class α.
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Main principle

The map (Ham , dHofer )→ (Barcodes, dbot),

φ 7→ B(persist. module associated to Floer theory of φ)

is Lipschitz!

Numerical invariants of Hamiltonian diffeomorphisms come from
Lipschitz functions on barcodes. (P.-Shelukhin, Usher-Zhang,
2015)
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Example: stable multiplicity

B-barcode. For a finite interval I = (a, b] put I c = (a + c , b − c].

m(B, I )- number of finite bars containing I .
µ2(B) := sup c such that ∃I of length > 2c with
m(B, I ) = m(B, I c) = odd.

Figure: Multiplicity
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Stable multiplicities-contd

Field F = Q. Consider Z2-action T : HF (φ2)→ HF (φ2) induced
by the conjugation φφ2φ−1 = φ2.

Define L(φ) ⊂ HF (φ2) as (−1)-eigenvalue of T .

L(φ)-persistence module, φ 7→ B(L(φ)) - Lipshitz.

Put µ2(φ) := µ2(B(L(φ)).

Claim: µ2(ψ2) = 0.

Proof: ψ induces action S : L(ψ2)→ L(ψ2) with S2 = T = −1l.
Thus multiplicity of each bar in L(ψ2) is even. .

Corollary: dH(φ, ψ2) ≥ C · µ2(φ).

This is key tool for the main theorem.
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Remark on Milnor’s constraint

φ ∈ Diff(M). If φ = ψ2, the number of primitive geometrically
distinct 2-periodic orbits of φ is even. (Milnor, 1983;
Albers-Frauenfelder, 2014).

Our invariant µ (stable multiplicity) involves parity of the
dimension of certain spaces generated by 2-periodic orbits of φ.

But the filtration by action functional is crucial: eggbeater

φ = f I ◦ f II with f II = Jf I J−1, where J2 = 1l–orientation reversing
measure-preserving involution, so φ = (f I J)2.
Here J flips the annuli.
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The End

CONGRATULATIONS TO

Étienne!
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