Moduli space of closed anti-de Sitter 3-manifolds

Nicolas Tholozan

University of Luxembourg

June 29, 2015
1. Moduli space of Riemann surfaces

2. Closed Anti-de Sitter 3-manifolds

3. Moduli space of anti-de Sitter 3-manifolds
Let S be a closed connected orientable surface of genus $g \geq 2$.
Let S be a closed connected orientable surface of genus $g \geq 2$.

Definition

Teichmüller space:

$$\mathcal{T}(S) = \left\{ \text{Complex structures on } S \right\} / \langle \text{Isotopies} \rangle,$$
Let S be a closed connected orientable surface of genus $g \geq 2$.

Definition

Teichmüller space:

$$\mathcal{T}(S) = \{\text{Complex structures on } S\}/\langle\text{Isotopies}\rangle,$$

Mapping class group:

$$\text{MCG}(S) = \langle\text{Diffeomorphisms}\rangle/\langle\text{Isotopies}\rangle,$$
Let S be a closed connected orientable surface of genus $g \geq 2$.

Definition

Teichmüller space:

$$\mathcal{T}(S) = \{\text{Complex structures on } S\}/\langle\text{Isotopies}\rangle,$$

Mapping class group:

$$\text{MCG}(S) = \langle\text{Diffeomorphisms}\rangle/\langle\text{Isotopies}\rangle,$$

Moduli space:

$$\text{Mod}(S) = \{\text{Complex structures on } S\}/\langle\text{Diffeomorphisms}\rangle = \mathcal{T}(S)/\text{MCG}(S).$$
Theorem (Poincaré)

For any complex structure on S, there is a unique conformal Riemannian metric on S which is hyperbolic (i.e. of constant curvature -1).
Theorem (Poincaré)

For any complex structure on S, there is a unique conformal Riemannian metric on S which is hyperbolic (i.e. of constant curvature -1).

Corollary

$$\text{Mod}(S) = \{\text{Hyperbolic metrics on } S\}/\langle\text{Diffeomorphisms}\rangle.$$
The moduli space has a natural topology:
The moduli space has a natural topology:

Theorem (Fricke, 1987)

\[T(S) \text{ is homeomorphic to } \mathbb{R}^{6g-6}. \]
The moduli space has a natural topology:

Theorem (Fricke, 1987)

- $T(S)$ is homeomorphic to \mathbb{R}^{6g-6}.
- $\text{MCG}(S)$ acts properly discontinuously on $T(S)$.
The moduli space has a natural topology:

Theorem (Fricke, 1987)

- $\mathcal{T}(S)$ is homeomorphic to \mathbb{R}^{6g-6}.
- $\text{MCG}(S)$ acts properly discontinuously on $\mathcal{T}(S)$.

Moreover, $\text{MCG}(S)$ has a torsion-free finite index subgroup (Serre, 1961).
Fuchsian representations

Let h be a hyperbolic metric on S.
Fuchsian representations

Let h be a hyperbolic metric on S.

- (\tilde{S}, \tilde{h}) is isometric to \mathbb{H}^2,
Fuchsian representations

Let h be a hyperbolic metric on S.

- (\tilde{S}, \tilde{h}) is isometric to \mathbb{H}^2,
- $\pi_1(S)$ identifies with a lattice in $\text{Isom}_+(\mathbb{H}^2) \cong \text{PSL}(2, \mathbb{R})$, via a discrete and faithful representation j, via j is well-defined up to conjugation.

Definition
A representation arising this way is called Fuchsian.
Fuchsian representations

Let h be a hyperbolic metric on S.

- (\tilde{S}, \tilde{h}) is isometric to \mathbb{H}^2,
- $\pi_1(S)$ identifies with a lattice in $\text{Isom}_+(\mathbb{H}^2) \simeq \text{PSL}(2, \mathbb{R})$, via a discrete and faithful representation j,
- j is well-defined up to conjugation.
Let \(h \) be a hyperbolic metric on \(S \).

- \((\tilde{S}, \tilde{h})\) is isometric to \(\mathbb{H}^2 \),
- \(\pi_1(S) \) identifies with a lattice in \(\text{Isom}_+(\mathbb{H}^2) \cong \text{PSL}(2, \mathbb{R}) \), via a discrete and faithful representation \(j \),
- \(j \) is well-defined up to conjugation.

Definition

A representation arising this way is called *Fuchsian*.
Other representations

\[
\text{Rep}(S) = \{ \rho : \pi_1(S) \to \text{PSL}(2, \mathbb{R}) \}/\text{PSL}(2, \mathbb{R}).
\]
Other representations

\[\text{Rep}(S) = \{ \rho : \pi_1(S) \to \text{PSL}(2, \mathbb{R}) \}/\text{PSL}(2, \mathbb{R}) . \]

Theorem

- The connected components of \(\text{Rep}(S) \) are classified by the Euler class (Goldman, 1980),

\[\text{Mod}(S) \cong \text{Rep}_{2g-2}(S)/\text{MCG}(S) . \]
Other representations

\[\text{Rep}(S) = \{ \rho : \pi_1(S) \to \text{PSL}(2, \mathbb{R}) \}/\text{PSL}(2, \mathbb{R}) \] .

Theorem

- *The connected components of Rep(S) are classified by the Euler class (Goldman, 1980),*
- *The Euler class takes integral values between 2 − 2g and 2g − 2 (Milnor, 1958, Wood, 1971),*
Other representations

\[\text{Rep}(S) = \{ \rho : \pi_1(S) \to \text{PSL}(2, \mathbb{R}) \}/\text{PSL}(2, \mathbb{R}) . \]

Theorem

- The connected components of \(\text{Rep}(S) \) are classified by the Euler class \((\text{Goldman, 1980})\),
- The Euler class takes integral values between \(2 - 2g\) and \(2g - 2\) \((\text{Milnor, 1958, Wood, 1971})\),
- \(\rho\) Fuchsian \(\Leftrightarrow\) euler(\(\rho\)) = \(\pm (2g - 2)\) \((\text{Goldman, 1980})\).
Other representations

\[
\text{Rep}(S) = \{\rho : \pi_1(S) \to \text{PSL}(2, \mathbb{R})\}/\text{PSL}(2, \mathbb{R})
\]

Theorem

- The connected components of \(\text{Rep}(S)\) are classified by the Euler class (Goldman, 1980),
- The Euler class takes integral values between \(2 - 2g\) and \(2g - 2\) (Milnor, 1958, Wood, 1971),
- \(\rho\) Fuchsian \(\iff\) \(\text{euler}(\rho) = \pm (2g - 2)\) (Goldman, 1980).

In particular,

\[
\text{Mod}(S) \simeq \text{Rep}_{2g-2}(S)/\text{MCG}(S).
\]
Other moduli spaces

Sometimes, moduli spaces of complex structures for manifolds of higher dimension. General notion of deformation space (analog of Teichmüller space) for locally homogeneous geometric structures (Ehresman, 1936, Thurston, 1980).

M closed manifold of dimension 3. Is there a “moduli space” of hyperbolic metrics on M?

Theorem (Mostow, 1968) If M admits a hyperbolic metric, then it is unique up to isometry.

What about the Lorentz analog of a hyperbolic metric?

Nicolas Tholozan

Moduli space of AdS 3-manifolds
Other moduli spaces

- Sometimes, moduli spaces of complex structures for manifolds of higher dimension.
Other moduli spaces

- Sometimes, moduli spaces of complex structures for manifolds of higher dimension.
- General notion of *deformation space* (analog of Teichmüller space) for locally homogeneous geometric structures (Ehresman, 1936, Thurston, 1980).
Other moduli spaces

- Sometimes, moduli spaces of complex structures for manifolds of higher dimension.
- General notion of *deformation space* (analog of Teichmüller space) for locally homogeneous geometric structures (Ehresman, 1936, Thurston, 1980).
- M closed manifold of dimension 3. Is there a “moduli space” of hyperbolic metrics on M?

Theorem (Mostow, 1968)
If M admits a hyperbolic metric, then it is unique up to isometry.

What about the Lorentz analog of a hyperbolic metric?
Other moduli spaces

- Sometimes, moduli spaces of complex structures for manifolds of higher dimension.
- General notion of deformation space (analog of Teichmüller space) for locally homogeneous geometric structures (Ehresman, 1936, Thurston, 1980).
- M closed manifold of dimension 3. Is there a “moduli space” of hyperbolic metrics on M?

Theorem (Mostow, 1968)

If M admits a hyperbolic metric, then it is unique up to isometry.
Other moduli spaces

- Sometimes, moduli spaces of complex structures for manifolds of higher dimension.
- General notion of deformation space (analog of Teichmüller space) for locally homogeneous geometric structures (Ehresman, 1936, Thurston, 1980).
- M closed manifold of dimension 3. Is there a “moduli space” of hyperbolic metrics on M?

Theorem (Mostow, 1968)

If M admits a hyperbolic metric, then it is unique up to isometry.

- What about the Lorentz analog of a hyperbolic metric?
1 Moduli space of Riemann surfaces

2 Closed Anti-de Sitter 3-manifolds

3 Moduli space of anti-de Sitter 3-manifolds
Definition

An anti-de Sitter (AdS) metric is a Lorentz metric of constant sectional curvature -1. A manifold with an AdS metric is an anti-de Sitter manifold.
Anti-de Sitter metrics

Definition

An anti-de Sitter (AdS) metric is a Lorentz metric of constant sectional curvature -1. A manifold with an AdS metric is an anti-de Sitter manifold.

AdS manifolds are locally isometric to a homogeneous space called the *anti-de Sitter space* (AdSn).
Definition

An anti-de Sitter (AdS) metric is a Lorentz metric of constant sectional curvature -1. A manifold with an AdS metric is an anti-de Sitter manifold.

AdS manifolds are locally isometric to a homogeneous space called the anti-de Sitter space (AdS^n).

Model for AdS^3
Anti-de Sitter metrics

Definition

An anti-de Sitter (AdS) metric is a Lorentz metric of constant sectional curvature -1. A manifold with an AdS metric is an anti-de Sitter manifold.

AdS manifolds are locally isometric to a homogeneous space called the *anti-de Sitter space* (AdSn).

Model for AdS3

\[\text{AdS}^3 = (\text{PSL}(2, \mathbb{R}), \text{Killing metric}) , \]
Definition

An anti-de Sitter (AdS) metric is a Lorentz metric of constant sectional curvature -1. A manifold with an AdS metric is an anti-de Sitter manifold.

AdS manifolds are locally isometric to a homogeneous space called the *anti-de Sitter space* (AdS^n).

Model for AdS^3

$$\text{AdS}^3 = (\text{PSL}(2, \mathbb{R}), \text{Killing metric}),$$

$$\text{Isom}^0(\text{AdS}^3) = \text{PSL}(2, \mathbb{R}) \times \text{PSL}(2, \mathbb{R}).$$
Anti-de Sitter space in dimension 3

Remark: AdS_3 is not simply connected: $\pi_1(\text{AdS}_3) \cong \mathbb{Z}$.

Nicolas Tholozan
Moduli space of AdS 3-manifolds
Remark: AdS^3 is not simply connected: $\pi_1(\text{AdS}^3) \sim \mathbb{Z}$.
Up to a finite cover, closed anti-de Sitter 3-manifolds are

\[\text{quotients of } \widetilde{\text{PSL}}(2, \mathbb{R}), \text{Klingler, 1996}, \text{Kulkarni–Raymond, 1985, Zeghib, 1998} \]

\[\text{PSL}(2, \mathbb{R})/\left(j \times \rho \right)(\Gamma), \text{where: } \Gamma = \pi_1(S), S \text{ closed oriented surface of genus } g \geq 2, j \text{ is } \text{Fuchsian}, \rho \text{ is uniformly contracting w.r.t. } j (\text{denoted } \rho \prec j), \text{i.e. there exists a } (j, \rho)\text{-equivariant map } f: H^2 \rightarrow H^2 \text{ which is contracting (Salein, 2000, Kassel, 2009).} \]
Up to a finite cover, closed anti-de Sitter 3-manifolds are quotients of $\overline{\text{PSL}(2, \mathbb{R})}$ (Carrière, 1989, Klingler, 1996)
Up to a finite cover, closed anti-de Sitter 3-manifolds are quotients of \(\text{PSL}(2, \mathbb{R}) \) (Carrière, 1989, Klingler, 1996, Kulkarni–Raymond, 1985, Zeghib, 1998)
Up to a finite cover, closed anti-de Sitter 3-manifolds are quotients of $\text{PSL}(2, \mathbb{R})$ (Carrière, 1989, Klingler, 1996, Kulkarni–Raymond, 1985, Zeghib, 1998) of the form

$$\text{PSL}(2, \mathbb{R})/(j \times \rho)(\Gamma),$$

where:
Up to a finite cover, closed anti-de Sitter 3-manifolds are quotients of $\text{PSL}(2, \mathbb{R})$ (Carrière, 1989, Klingler, 1996, Kulkarni–Raymond, 1985, Zeghib, 1998) of the form

$$\text{PSL}(2, \mathbb{R})/(j \times \rho)(\Gamma),$$

where:

- $\Gamma = \pi_1(S)$, S closed oriented surface of genus $g \geq 2$ (Kulkarni–Raymond, 1985),
Up to a finite cover, closed anti-de Sitter 3-manifolds are quotients of $\text{PSL}(2, \mathbb{R})$ (Carrière, 1989, Klingler, 1996, Kulkarni–Raymond, 1985, Zeghib, 1998) of the form

$$\text{PSL}(2, \mathbb{R})/(j \times \rho)(\Gamma),$$

where:

- $\Gamma = \pi_1(S)$, S closed oriented surface of genus $g \geq 2$ (Kulkarni–Raymond, 1985),
- j is Fuchsian (Kulkarni–Raymond, 1985),
Up to a finite cover, closed anti-de Sitter 3-manifolds are quotients of $\text{PSL}(2, \mathbb{R})$ (Carrière, 1989, Klingler, 1996, Kulkarni–Raymond, 1985, Zeghib, 1998) of the form

$$\text{PSL}(2, \mathbb{R})/(j \times \rho)(\Gamma),$$

where:

- $\Gamma = \pi_1(S)$, S closed oriented surface of genus $g \geq 2$ (Kulkarni–Raymond, 1985),
- j is Fuchsian (Kulkarni–Raymond, 1985),
- ρ is uniformly contracting w.r.t. j (denoted $\rho \prec j$), i.e. there exists a (j, ρ)-equivariant map

$$f : \mathbb{H}^2 \to \mathbb{H}^2$$

which is contracting (Salein, 2000, Kassel, 2009).

Up to a finite cover, closed AdS 3-manifolds are non-trivial circle bundles over a hyperbolic surface.

Up to a finite cover, closed AdS 3-manifolds are non-trivial circle bundles over a hyperbolic surface.

More precisely, if $\rho \prec j$,

$$\text{PSL}(2, \mathbb{R})/(j \times \rho)(\pi_1(S))$$

is a circle bundle over S of Euler class

$$\text{euler}(j) - \text{euler}(\rho) .$$
Notations:

- S closed surface of genus $g \geq 2$, $\Gamma = \pi_1(S)$,
Notations:

- S closed surface of genus $g \geq 2$, $\Gamma = \pi_1(S)$,
- k integer, $2 - 2g < k < 2g - 2$,

Notations:

- S closed surface of genus $g \geq 2$, $\Gamma = \pi_1(S)$,
- k integer, $2 - 2g < k < 2g - 2$,
- M circle bundle over S of Euler class $2g - 2 - k$.
Notations:

- S closed surface of genus $g \geq 2$, $\Gamma = \pi_1(S)$,
- k integer, $2 - 2g < k < 2g - 2$,
- M circle bundle over S of Euler class $2g - 2 - k$.

Conclusion of Klingler, Kulkarni–Raymond, Kassel

(Part of) the moduli space of AdS metrics on M

$$\text{Mod}_{\text{AdS}}(M) = \{\text{AdS metrics on } M\} / \langle \text{Diffeomorphisms} \rangle$$

is parametrized by

$$\text{Adm}_k(S) = \{(j, \rho) \in T(S) \times \text{Rep}_k(S) \mid \rho \prec j\} / \text{MCG}(S).$$
A theorem of Étienne Ghys

\(\Gamma \) lattice in \(\text{PSL}(2, \mathbb{C}) \). \(i : \Gamma \to \text{PSL}(2, \mathbb{C}) \) the inclusion.
A theorem of Étienne Ghys

\[\Gamma \text{ lattice in } \text{PSL}(2, \mathbb{C}). \]
\[i : \Gamma \to \text{PSL}(2, \mathbb{C}) \text{ the inclusion.} \]
\[\rho : \Gamma \to \text{PSL}(2, \mathbb{C}) \text{ close enough to the trivial representation.} \]
A theorem of Étienne Ghys

\(\Gamma \) lattice in \(\text{PSL}(2, \mathbb{C}) \). \(i : \Gamma \to \text{PSL}(2, \mathbb{C}) \) the inclusion. \(\rho : \Gamma \to \text{PSL}(2, \mathbb{C}) \) close enough to the trivial representation. Then

\[(i \times \rho)(\Gamma)\]

A theorem of Étienne Ghys

\(\Gamma \) lattice in \(\text{PSL}(2, \mathbb{C}) \). \(i : \Gamma \rightarrow \text{PSL}(2, \mathbb{C}) \) the inclusion. \(\rho : \Gamma \rightarrow \text{PSL}(2, \mathbb{C}) \) close enough to the trivial representation. Then

\[
(i \times \rho)(\Gamma)
\]

Theorem (Ghys, 1995)

Every complex structure on \(\Gamma \backslash \text{PSL}(2, \mathbb{C}) \) *close to the standard one is biholomorphic to*

\[
\text{PSL}(2, \mathbb{C})/(i \times \rho)(\Gamma)
\]

for some \(\rho \) *close to the trivial representation.*
A theorem of Étienne Ghys

\[\Gamma \text{ lattice in } \text{PSL}(2, \mathbb{C}). \ i : \Gamma \to \text{PSL}(2, \mathbb{C}) \text{ the inclusion.} \]
\[\rho : \Gamma \to \text{PSL}(2, \mathbb{C}) \text{ close enough to the trivial representation. Then} \]

\[(i \times \rho)(\Gamma) \]

Theorem (Ghys, 1995)

Every complex structure on \(\Gamma \backslash \text{PSL}(2, \mathbb{C}) \) close to the standard one is biholomorphic to

\[\text{PSL}(2, \mathbb{C})/(i \times \rho)(\Gamma) \]

for some \(\rho \) close to the trivial representation. Moreover, \(\rho \) and \(\rho' \) give the same complex manifold iff they are conjugate.
1 Moduli space of Riemann surfaces

2 Closed Anti-de Sitter 3-manifolds

3 Moduli space of anti-de Sitter 3-manifolds
Theorem (Salein, 2000) \(\text{Adm}_k(S) \) is non-empty.

Theorem (T., 2014) \(\text{Adm}_k(S) \) is homeomorphic to \(\left(\mathcal{T}(S) \times \text{Rep}_k(S) \right) / \text{MCG}(S) \).

In particular, it is connected.

\[\text{Adm}_k(S) = \{(j, \rho) \in \mathcal{T}(S) \times \text{Rep}_k(S) \mid \rho \preceq j\}/\text{MCG}(S) \]

can be seen as an open and closed subset of

\[\text{Mod}_{\text{AdS}}(M) = \{\text{AdS metrics on } M\}/\langle\text{Diffeomorphisms}\rangle. \]
\[\text{Adm}_k(S) = \{(j, \rho) \in \mathcal{T}(S) \times \text{Rep}_k(S) \mid \rho \prec j\}/\text{MCG}(S) \]

can be seen as an open and closed subset of
\[\text{Mod}_{\text{AdS}}(M) = \{\text{AdS metrics on } M\}/\langle\text{Diffeomorphisms}\rangle. \]

Theorem (Salein, 2000)

\(\text{Adm}_k(S) \) is non-empty.
Adm_k(S) = \{(j, \rho) \in T(S) \times \text{Rep}_k(S) \mid \rho \prec j\}/\text{MCG}(S)

can be seen as an open and closed subset of

\text{Mod}_{\text{AdS}}(M) = \{\text{AdS metrics on } M\}/\langle\text{Diffeomorphisms}\rangle.

Theorem (Salein, 2000)

Adm_k(S) is non-empty.

Theorem (T., 2014)

Adm_k(S) is homeomorphic to

\((T(S) \times \text{Rep}_k(S))/\text{MCG}(S)\).

In particular, it is connected.
Ingredients of the proof

- \(\rho : \pi_1(S) \to \text{PSL}(2,\mathbb{R}) \) (non-elementary).
- \(J_0 \) complex structure on \(S \).

Theorem (Eells–Sampson, 1964, Corlette, 1988)

There is a unique map \(f_{J_0,\rho} : (\tilde{S},\tilde{J}_0) \to (H^2, g_P) \) which is \(\rho \)-equivariant and harmonic.

Proposition (Hopf)

The \((2,0) \)-part of \(f^*J_0,\rho g_P \) is a holomorphic quadratic differential on \((S,J_0) \) called the Hopf differential of \(f_{J_0,\rho} \).
Ingredients of the proof

\[\rho : \pi_1(S) \to \text{PSL}(2, \mathbb{R}) \text{ (non-elementary).} \]
\[J_0 \text{ complex structure on } S. \]
Ingredients of the proof

\[\rho : \pi_1(S) \to \text{PSL}(2, \mathbb{R}) \text{ (non-elementary).} \ J_0 \text{ complex structure on } S. \]

Theorem (Eells–Sampson, 1964, Corlette, 1988)

There is a unique map

\[f_{J_0, \rho} : (\tilde{S}, \tilde{J}_0) \to (\mathbb{H}^2, g_P) \]

which is \(\rho \)-equivariant and harmonic.
Ingredients of the proof

\[\rho : \pi_1(S) \to \text{PSL}(2, \mathbb{R}) \text{ (non-elementary).} \]
\[J_0 \text{ complex structure on } S. \]

Theorem (Eells–Sampson, 1964, Corlette, 1988)

There is a unique map

\[f_{J_0, \rho} : (\tilde{S}, \tilde{J}_0) \to (\mathbb{H}^2, g_P) \]

which is \(\rho \)-equivariant and harmonic.

Proposition (Hopf)

The \((2, 0)\)-part of \(f_{J_0, \rho}^* g_P \) is a holomorphic quadratic differential on \((S, J_0)\) called the Hopf differential of \(f_{J_0, \rho} \).

Given a holomorphic quadratic differential Φ on (S, J_0), there is (up to conjugation) a unique Fuchsian representation j such that Φ is the Hopf differential of $f_{J_0,j}$.

Given a holomorphic quadratic differential Φ on (S, J_0), there is (up to conjugation) a unique Fuchsian representation j such that Φ is the Hopf differential of $f_{J_0,j}$.

In particular, there is a unique Fuchsian representation j such that $f_{J_0,j}$ and $f_{J_0,\rho}$ have the same Hopf differential.

Given a holomorphic quadratic differential Φ on (S, J_0), there is (up to conjugation) a unique Fuchsian representation j such that Φ is the Hopf differential of $f_{J_0,j}$.

In particular, there is a unique Fuchsian representation j such that $f_{J_0,j}$ and $f_{J_0,\rho}$ have the same Hopf differential.

Lemma (Deroin–T., 2013)

If $f_{J_0,j}$ and $f_{J_0,\rho}$ have the same Hopf differential, then

$$f_{J_0,\rho} \circ f_{J_0,j}^{-1}$$

is contracting.
The map $\Psi_\rho : J_0 \mapsto j$ is a well defined map from $\mathcal{T}(S)$ to $\mathcal{T}(S)$.
Theorem (Deroin–T., 2013)

The image of Ψ_ρ lies in the domain

$$\text{Dom}(\rho) = \{ j \in T(S) \mid j \succ \rho \}.$$

In particular, this domain is non empty (obtained independently by Guéritaud–Kassel–Wolff).
Theorem (Deroin–T., 2013)

The image of Ψ_ρ lies in the domain

$$\text{Dom}(\rho) = \{ j \in \mathcal{T}(S) \mid j \succ \rho \}.$$

In particular, this domain is non empty (obtained independently by Guéritaud–Kassel–Wolff).

Theorem (T., 2014)

$$\Psi_\rho : \mathcal{T}(S) \to \text{Dom}(\rho)$$

is a homeomorphism.
Moduli space of Riemann surfaces
Closed Anti-de Sitter 3-manifolds
Moduli space of anti-de Sitter 3-manifolds

Moduli space of AdS 3-manifolds

Geometry of the moduli space

Mod \((S) \) not only has a good topology, it has a very interesting geometry. It is a complex orbifold (Teichmüller) and can be compactified (Deligne–Mumford, 1969), it carries a Kähler metric (Weil, 1958, Ahlfors, 1961) of negative curvature (Ahlfors, 1961, Wolpert, 1986), whose volume is finite (Wolpert, 1985).

Question: Can we define a similar geometry on \(\text{Adm}_k (S) \)?
Moduli space of Riemann surfaces
Closed Anti-de Sitter 3-manifolds
Moduli space of anti-de Sitter 3-manifolds

Geometry of the moduli space

$\text{Mod}(S)$ not only has a good topology, it has a very interesting geometry.
Mod(S) not only has a good topology, it has a very interesting geometry.

- It is a complex orbifold (Teichmüller) and can be compactified (Deligne–Mumford, 1969),
Mod(S) not only has a good topology, it has a very interesting geometry.

- It is a complex orbifold (Teichmüller) and can be compactified (Deligne–Mumford, 1969),
Geometry of the moduli space

\[
\text{Mod}(S) \text{ not only has a good topology, it has a very interesting geometry.}
\]

- It is a complex orbifold (Teichmüller) and can be compactified (Deligne–Mumford, 1969),

Question: Can we define a similar geometry on \(\text{Adm}_k(S) \)?
Recall that

\[\text{Adm}_k(S) \subset T(S) \times \text{Rep}_k(S)/\text{MCG}(S) . \]
Recall that

$$\text{Adm}_k(S) \subset T(S) \times \text{Rep}_k(S)/\text{MCG}(S).$$

By restriction, it carries

- a symplectic form ω (Goldman, 1984)
Recall that

\[\text{Adm}_k(S) \subset T(S) \times \text{Rep}_k(S)/\text{MCG}(S). \]

By restriction, it carries

- a symplectic form \(\omega \) (Goldman, 1984)
- a complex structure (Hitchin, 1987)
Theorem (T., 2015)

The symplectic manifold $\left(\text{Adm}_k(S), \omega \right)$ has finite volume.
Theorem (T., 2015)

The symplectic manifold $\text{Adm}_k(S, \omega)$ has finite volume.
Thank you for your attention!