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My first encounter with the group of real analytic
diffeomorphisms

A mysterious paper in Springer Lecture Notes

M. R. Herman,

Sur le groupe des difféomorphismes R-analytiques du tore

Differential Topology and Geometry,
edited by Joubert, Moussu and Roussarie,

Proceedings of the Colloquium Held at Dijon, 17–22 June, 1974,
pp. 36–42. Lecture Notes in Mathematics, Vol. 484, Springer, Berlin, 1975.
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Herman, 1974
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The group of real analytic diffeomorphisms

Notation
For a compact real analytic manifold M, let Diffω(M) denote
the group of real analytic diffeomorphisms of M.

Let Diffω(M)0 denote its identity component
with respect to the C1 topology.

Theorem [Herman (1974)]
Diffω(Tn)0 is a simple group.
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Herman’s proof

By a result of Arnold, a real analytic diffeomorphism
near a Diophantine rotation Rα is real analytically conjugate to Rα
if its rotation number is α.
α ∈ (R/Z)n is Diophantine if it is badly approximable by rationals.

We can (easily) find an element g ∈ (PSL(2; R))n

and continuous families {at}, {bt} ⊂ (PSL(2; R))n (t ∈ (−ε, ε)n)
such that Rα+t = at gat

−1bt g−1bt
−1.

Since Diff∞(Tn)0 is simple (Mather, Thurston, Herman),
for any nontrivial f ∈ Diffω(Tn)0, g can be written as a product
of conjugates of f and f−1 by elements hi ∈ Diff∞(Tn)0:
g =

∏
i hi f±1hi

−1.
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Herman’s proof

Since Diffω(Tn)0 is dense in Diff∞(Tn)0, we can approximate
hi by ĥi ∈ Diffω(Tn)0 so that g is approximated by an element ĝ
of the normalizer N( f ): ĝ =

∏
i ĥi f±1 ĥi

−1.

Then at ĝat
−1bt ĝ−1bt

−1 approximates Rα+t . In particular, its rotation
number varies as t varies and there exists an element of rotation
number α. This element lies in N( f ). Hence (by Arnold) Rα ∈ N( f ).

Since PSL(2; R) is a simple group, the normalizer in PSL(2; R)
of any nontrivial rotation is PSL(2; R).
Then Rα ∈ N( f ) implies (PSL(2; R))n ⊂ N( f ), and in particular,
all the rotations belong to N( f ).
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Herman’s proof

The result of Arnold in fact says that for a real analytic diffeomorphism
u near a Diophantine rotation Rα, there is a rotation Rλ such that
Rλ−1 ◦ u is real analytically conjugate to Rα.

That is, a neighborhood of Rα is contained in N( f ).
Thus a neighborhood of id is contained in N( f ). �

Implication of the result of Arnold
Every element of Diffω(Tn)0 is homologous to a rotation.

For, if u is near id, u ◦ Rα is near Rα and there is Rλ such that

u ◦ Rα = Rλ ◦ ϕ ◦ Rα ◦ ϕ−1.

Then u = Rλ ◦ [ϕ, Rα].
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My second encounter with the group of real analytic
diffeomorphisms
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Ghys, 1993

The operation of taking the commutator

[•, •] : Diffω(M)0 × Diffω(M)0 −→ Diffω(M)0

behaves as a quadratic function near the identity.

Hence there is a neighborhood of the identity such that
the commutator of two elements in the neighborhood is much closer
to the identity.

And hence . . . .

Ask Étienne for the details.
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My third encounter with the group of real analytic
diffeomorphisms

In 2002, I thought about the group of leaf preserving diffeomorphisms
of a foliation.
On the group of foliation preserving diffeomorphisms, Foliations 2005, Lodz, (2006) 411–430.

In 2003, I asked myself what can be said for the group of real analytic
diffeomorphisms by using the group of leaf preserving real analytic
diffeomorphisms of a real analytic foliation.

Any diffeomorphism should be written as a product of conjugates of
leaf preserving diffeomorphisms.
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Results, 2009

Ann. Scient. Éc. Norm. Sup.

4 e série, t. 42, 2009, p. 601 à 651

ON THE GROUP OF REAL ANALYTIC
DIFFEOMORPHISMS

by Takashi TSUBOI

Abstract. – The group of real analytic diffeomorphisms of a real analytic manifold is a rich
group. It is dense in the group of smooth diffeomorphisms. Herman showed that for the n-dimensional
torus, its identity component is a simple group. For U(1) fibered manifolds, for manifolds admitting
special semi-free U(1) actions and for 2- or 3-dimensional manifolds with nontrivial U(1) actions, we
show that the identity component of the group of real analytic diffeomorphisms is a perfect group.

Résumé. – Le groupe des difféomorphismes analytiques réels d’une variété analytique réelle est
un groupe riche. Il est dense dans le groupe des difféomorphismes lisses. Herman a montré que, pour
le tore de dimension n, sa composante connexe de l’identité est un groupe simple. Pour les variétés
U(1) fibrées, pour les variétés admettant une action semi-libre spéciale de U(1), et pour les variétés de
dimension 2 ou 3 admettant une action non-triviale deU(1), onmontre que la composante de l’identité
du groupe des difféomorphismes analytiques réels est un groupe parfait.
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Results, 2009

We change the question.

Is Diffω(M)0 simple ? (Conjectured by Herman 1974)
=⇒

Is Diffω(M)0 perfect ?

Theorem
If Mn admits a free U(1) action or a special semi-free U(1) action,
then Diffω(Mn)0 is a perfect group.
Here the isotropy subgroups of a semi-free action are either trivial or the whole group.

A special semi-free action is that on N × U(1)/(∂N × U(1) ∼ ∂N).

For n = 2, 3, if Mn admits a nontrivial U(1) action, then Diffω(Mn)0 is
a perfect group.

In particular, Diffω(Sn)0 is a perfect group.
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Orbitwise rotations

Proposition
If Mn admits a nontrivial U(1) action, then any element of Diffω(Mn)0
is homologous to an orbitwise rotation.

This is a consequence of the followings.

The regimentation lemma which replaces the fragmentation lemma.

An inverse mapping theorem for real analytic maps with singular
Jacobians.

The Arnold theorem and its generalization.
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Inverse mapping theorem for real analytic maps with singular
Jacobians
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Sketch of the proof of Proposition

Take N (N � n) real analytic diffeomorphisms so that the generating
vector fields of the U(1) action conjugated by these diffeomorphisms
span the tangent space Tx Mn of any point x of Mn.

We take a real analytic Riemannian metric, and then, for U(1) actions
generated by the vector fields ξ1, . . . , ξn, we have the determinant
Δ = det(ξi j) with respect to the orthonomal frame ∂

∂x j
,

where ξi =
∑
ξi j

∂
∂x j

.

Mn is covered by dense open sets of the form Mn
� {Δk = 0}

(k = 1, . . . ,
(N

n

)
)．
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Sketch of the proof of Proposition

By the regimentation lemma, a real analytic diffeomorphism f
sufficiently close to the identity can be decomposed into a product
of fk, where fk − id is divisible by a given power of Δk.

By the inverse mapping theorem for real analytic maps with singular
Jacobians, fk can be decomposed into a product of orbit preserving
real analytic diffeomorphisms.

By the Arnold theorem and a theorem of Arnold type
for the Diophantine rotations of concentric circles on the plane,
the orbit-preserving real analytic diffeomorphisms are homologous to
orbitwise rotations up to the commutator subgroup
of the orbit preserving diffeomorphisms. �
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Regimentation lemma and fragmentation lemma
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Sketch of the proof of Theorem

For the U(1) actions of our Theorem, we can construct ˜SL(2; R)
actions which preserve orbits of the U(1) actions.

Then we can write orbitwise rotations as products of commutators of
orbit preserving real analytic diffeomorphisms. �

Remarks
There should be other ways to show that orbitwise rotations are
product of commutators of real analytic diffeomorphisms.

In order to make ˜SL(2; R) act in orbit-preserving way, we need
multi-sections to the orbits with appropriate singularity.
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U(1) actions

U(1) actions should be easy to understand. Yes. U(1) actions are
isometric actions and there are local normal forms.

A neighborhood of an orbit of period 1
m is described by the first retern

map which is conjugate to an element of order m of O(n − 1).

We know its normal form:
(e

2
1π
m
√−1, . . . , e

2
[(n−1)/2]π
m

√−1) or (e
2
1π

m
√−1, . . . , e

2
[(n−1)/2]π
m

√−1,±1).

A neighborhood of a fixed point is described by an injective
homomorphism U(1) −→ O(n).

We know its normal form: (up1 , . . . , up[n/2] ) or (up1 , . . . , up[n/2] , 1).

Is there any difficulty to construct multi-sections?

The unions of orbits of fixed types form a nice (but complicated)
stratification.
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U(1) actions on 4-dimensional manifolds

How about 4-dimensional manifolds with U(1) actions.

Let me assume that M4 is orientable.

For an orbit of period 1
m, the orbits in a neighborhood of the orbit is

described by an element A ∈ SO(3) of order m.

A is conjugate to
⎛⎜⎜⎜⎜⎝e

2
π
m

√−1 0
0 1

⎞⎟⎟⎟⎟⎠ acting on C × R ((
, m) = 1).

The orbit space is locally

(the cone of angle
2π
m

) × R.
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U(1) actions on 4-dimensional manifolds

For a fixed point, the action in a neighborhood of the fixed point is

conjugate to that given by

⎛⎜⎜⎜⎜⎜⎝e2pπ
√−1 t 0
0 e2qπ

√−1 t

⎞⎟⎟⎟⎟⎟⎠ acting on C2,

where (p, q) = 1.

The orbit space is a point with 0, 1 or 2 rays from it corresponding to
multiple orbits of order p � ±1 and q � ±1 for isolated fixed points,
and a boundary point of the half 3-space for non-isolated fixed points.

The orbit space M4/U(1) is a 3-dimensional manifold with cone
singularity
along a disjoint union of circles or closed intervals,
with isolated points corresponding to isolated fixed points, and
with boundary corresponding to non-isolated fixed points.

Takashi TSUBOI (the University of Tokyo) Diffω(M)0 July 3, 2015 21 / 52



U(1) actions on 4-dimensional manifolds

(±1,±1)

(±1, q)

(p, q)

multiplicity p multiplicity q

multiplicity q
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U(1) actions on 4-dimensional manifolds

Let k be the least common multiple of the multiplicities of multiple
orbits.

Let M4 = M4/(Z/kZ) be the space obtained as the quotient by the
action of Z/kZ ⊂ U(1).

There are no multiple orbits though there are images of them.

The image of multiple orbits of multiplicity m is codimension 2 and
locally

(the cone of angle
2π
m

) × U(1)/(Z/kZ) × R.
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U(1) actions on 4-dimensional manifolds

There are singular points which are the images of fixed points.

The action

⎛⎜⎜⎜⎜⎜⎝e2pπ
√−1 t 0
0 e2qπ

√−1 t

⎞⎟⎟⎟⎟⎟⎠ on C2 is the pull-back

of the standard diagonal action

⎛⎜⎜⎜⎜⎜⎝e2pqπ
√−1 t 0

0 e2pqπ
√−1 t

⎞⎟⎟⎟⎟⎟⎠
by the map

(
z1
z2

)

−→

(
z1

q

z2
p

)
.

Hence by identifying by the action Z/pqZ, we obtain the cone of S3

with the Hopf fibration with the images of multiple orbits are
transversely cones of angle 2π

p and 2π
q .

By identifying the action Z/kZ, we obtain we obtain the cone of
L( k

pq , 1) with quotient of the above Hopf fibration.
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U(1) actions on CP2

We should study a concrete example.

CP2 is a toric manifold with the T2 action given as follows: For
(u, v) ∈ U(1)2 and [x : y : z] ∈ CP2,

(u, v) · [x : y : z] = [ux : vy : z].

A U(1) subaction either has 3 fixed points or has a fixed point set
{1 point} � CP1.

These actions are neither free nor special semi-free.

Takashi TSUBOI (the University of Tokyo) Diffω(M)0 July 3, 2015 25 / 52



U(1) actions on CP2

[0 : 0 : 1]

[0 : 1 : 0]

[1 : 0 : 0]

[x : y : z] 
→ [upx : uqy : z]

multiplicity |p|

multiplicity|q| multiplicity|p − q|
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U(1) actions on CP2

A U(1) action fixing 3 points is given by
u · [x : y : z] = [upx : uqy : z], where (p, q) = 1.

The fixed points are [0 : 0 : 1], [0 : 1 : 0] and [1 : 0 : 0], and
[0 : 0 : 1] is of type (p, q),
[0 : 1 : 0] is of type (p − q,−q), and
[1 : 0 : 0] is of type (q − p,−p).

The nontrivial orbits on {z = 0} (� CP1) are
of period 1

|p−q| (multiplicity |p − q|).
The nontrivial orbits on {y = 0} (� CP1) are
of period 1

|p| (multiplicity |p|).
The nontrivial orbits on {x = 0} (� CP1) are
of period 1

|q| (multiplicity |q|).
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U(1) actions on CP2

In the orbit space CP2/U(1) ≈ S3, there is
a circle with 3 points and edges are marked with |p|, |q|, |p − q|,
an arc consisting of 2 edges marked with |p|, |p − 1| or
the union of an edges marked with 2 and an isolated point.

|p − q|
|q|

|p|

|p| |p − 1|

2
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U(1) actions on CP2

k = pq|p − q| is the least common multiple of p, q and |p − q|.

Then CP2/(Z/kZ) has 3 singular points which are cones of
L(|p − q|, 1), L(p, 1) and L(q, 1).

L(|p − q|, 1) has two distinct orbits
which are transversely cones of angle 2π

p and of angle 2π
q .

L(p, 1) has two distinct orbits
which are transversely cones of angle 2π

q and of angle 2π
|p−q| .

L(q, 1) has two distinct orbits
which are transversely cones of angle 2π

p and of angle 2π
|p−q| .

Takashi TSUBOI (the University of Tokyo) Diffω(M)0 July 3, 2015 29 / 52



U(1) actions on CP2

A U(1) action fixing {1 point} � CP1 is obtained as the union of the
cone and the mapping cylinder of the Hopf fibration of S3.
Its orbit space is the 3-dimensional disk D3.

A U(1) action fixing {1 point} � CP1 is semi-free (which means that
the isotropy subgroups are U(1) itself or trivial), but there are no
section to the U(1) action.
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To write an orbitwise rotation as a product of commutators

Make SL(2; R) (or ˜SL(2; R)) act on the orbits.

Since elements of SO(2) can be written as products of commutators of
elements of SL(2; R), we only need to write orbitwise rotation in this
way real analytically with respect to the parameter of the orbit space.

It is necessary to have a mult-section for ˜SL(2; R) to act on the orbits
of the U(1) action.

We construct the multi-section on the complement of real analytic
sets.

We will also construct the multi-section in the case of U(1) action with
3 fixed points.
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Action on orbits of U(1) actions

A = Aa =

(
a 0
0 a−1

)
acts on U(1) as follows:

For x = x1 + x2
√−1 ∈ C, put A(x) = Aa(x) = ax1 + a−1x2

√−1.

For u = u1 + u2
√−1 ∈ U(1), A · u is defined by

A · u = A(u)
|A(u)| =

au1 + a−1u2
√−1

|au1 + a−1u2
√−1|

=

a
u + u

2
+

1
a

u − u
2∣∣∣∣∣au + u

2
+

1
a

u − u
2

∣∣∣∣∣
=

1
2

(a +
1
a

)u +
1
2

(a − 1
a

)u
∣∣∣∣∣12(a +

1
a

)u +
1
2

(a − 1
a

)u
∣∣∣∣∣
∈ U(1).
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Action on orbits of U(1) actions
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Action on orbits of U(1) actions

Let a be a real analytic function on CP2 invariant under the U(1)
action.

We look at the condition for the action of A given by
(
a(γ) 0

0 a−1(γ)

)

on the orbit γ to be real-analytic.
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Semi-free U(1) action on CP2

The U(1) action U(1) × CP2 −→ CP2 is given as follows:
(u, [x : y : z]) 
−→ [ux : uy : z] = [x : y : u−1 z].

We can define a trivialization on
{[x : y : 1]

∣∣∣ x � 0} (⊂ CP2) by

[x : y : 1] 
−→ ((|x|, y
x

),
x
|x| ) ∈ (R>0 × C) × U(1).

Then
[ux : uy : 1] 
−→ ((|x|, y

x
),

ux
|x| ) .

We also have a trivialization on another open set
{[x : y : 1]

∣∣∣ y � 0}
by

[x : y : 1] 
−→ ((|y|, x
y

),
y
|y| ) ∈ (R>0 × C) × U(1).
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Semi-free U(1) action on CP2

Under the trivialization

[x : y : 1] 
−→ ((|x|, y
x

),
x
|x| ) ∈ (R>0 × C) × U(1),

since
A(x/|x|)
|A(x/|x|)| =

A(x)
|A(x)| , the action of A on

CP2
� ({x = 0} ∪ {z = 0}) is written as follows:

[x : y : 1] 
−→
[
x

A(x)
x

( |A(x)|
|x|

)−1
: y

A(x)
x

( |A(x)|
|x|

)−1
: 1

]
.
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Semi-free U(1) action on CP2

Here
A(x)

x
=

1
2

(a +
1
a

) +
1
2

a + 1
a

a − 1

xx
x2 .

Hence, if |x|2∣∣∣(a − 1), then the action is real analytic on {x = 0}, i.e.,
on the whole CP2

�
{z = 0}.
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Semi-free U(1) action on CP2
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Semi-free U(1) action on CP2

The action of A on CP2
�

{x = 0} is written as follows:

[1 : y : z] =
[1

z
:

y
z

: 1
]


−→
[1

z
A(1/z)

1/z

( |A(1/z)|
|1/z|

)−1
:

y
z

A(1/z)
1/z

( |A(1/z)|
|1/z|

)−1
: 1

]

=

[
1 : y : z

( A(1/z)
1/z

)−1 |A(1/z)|
|1/z|

]
.

Here

A(1/z)
1/z

=
A(z/(zz))

z/(zz)
=

A(z)

z
=

1
2

(a +
1
a

) +
1
2

a + 1
a

a − 1

zz
z2 .

Hence, if |z|2∣∣∣(a − 1), then the action is real analytic on {z = 0}, i.e.,
on the whole CP2

�
{x = 0}.
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Semi-free U(1) action on CP2

The action of A on CP2
�

{y = 0} is written as follows:

[x : 1 : z] =
[ x

z
:

1
z

: 1
]


−→
[ x

z
A(x/z)

x/z

( |A(x/z)|
|x/z|

)−1
:

1
z

A(x/z)
x/z

( |A(x/z)|
|x/z|

)−1
: 1

]

=

[
x : 1 : z

( A(x/z)
x/z

)−1 |A(x/z)|
|x/z|

]
.

Here

A(x/z)
x/z

=
A((xz)/(zz)

(xz)/(zz)
=

A(xz)

xz
=

1
2

(a +
1
a

) +
1
2

a + 1
a

a − 1

(xx)(zz)
x2 z2 .
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Semi-free U(1) action on CP2

Hence, if |x|2|z|2∣∣∣(a − 1), then the action is real analytic on
{x = 0} ∪ {z = 0}, i.e., on the whole CP2

�
{y = 0}.

If |x|2|z|2∣∣∣(a − 1), the action is real analytic on all coordinate
neighborhoods, and hence it is so on CP2.
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Semi-free U(1) action on CP2

This means orbitwise rotation which is the identity on
{x = 0} ∪ {z = 0} and is sufficiently flat there can be written as a
product of commutators.

If we use the action of A with respect to the other trivialization, we
can show that orbitwise rotation which is the identity on
{y = 0} ∪ {z = 0} and is sufficiently flat there can be written as a
product of commutators.

The flatness on {z = 0} ∪ {[0 : 0 : 1]} can be achieved when we
apply the regimentation lemma.
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U(1) action on CP2 with 3 fixed points

Consider the U(1)-action given by [x : y : 1] 
−→ [upx : uqy : 1]
which fixes [0 : 0 : 1], [1 : 0 : 0] and [0 : 1 : 0].

We look at the fixed point [0 : 0 : 1] and on {x � 0} ∩ {z � 0}, using

the projection [x : y : 1] 
−→ ((|x|, yp

xq ),
xq

|xq| ), we make A act on the

orbits so that

((|x|, yp

xq ),
xq

|xq| ) 
−→ ((|x|, yp

xq ),
A(xq)
|A(xq)| ) .
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U(1) action on CP2 with 3 fixed points

Then yp 
−→ |x|q yp

xq
A(xq)
|A(xq)| and xq 
−→ |x|q A(xq)

|A(xq)| . Hence the action

of A on [x : y : 1] is as follows:

[x : y : 1] 
−→
[
x
( A(xq)

xq

) 1
q
( |A(xq)|
|x|q

)− 1
q

: y
( A(xq)

xq

) 1
p
( |A(xq)|
|x|q

)− 1
p

: 1
]
.

Here
A(xq)

xq =
1
2

(a +
1
a

) +
1
2

a + 1
a

a − 1

(xx)q
x2q

is real analytic on CP2
� {z = 0} if (xx)q|(a − 1).
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U(1) action on CP2 with 3 fixed points

The action of A maps

[x : 1 : z] =
[ x

z
:

1
z

: 1
]


−→
[ x

z

( A((x/z)q)
(x/z)q

) 1
q
( |A((x/z)q)|
|x/z|q

)− 1
q

:
1
z

( A((x/z)q)
(x/z)q

) 1
p
( |A((x/z)q)|
|x/z|q

)− 1
p

: 1
]

=

[
x
( A((x/z)q)

(x/z)q

) 1
q− 1

p
( |A((x/z)q)|
|x/z|q

)− 1
q+

1
p

: 1

: z
( A((x/z)q)

(x/z)q

)− 1
p
( |A((x/z)q)|
|x/z|q

) 1
p
]
.
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U(1) action on CP2 with 3 fixed points

Here

A((x/z)q)
(x/z)q

=
A((xz)/(zz))q)

((xz)/(zz))q
=

A((xz)q)

(xz)q

=
1
2

(a +
1
a

) +
1
2

a + 1
a

a − 1

(xx)q(zz)q
(zx)2q .

Hence the action of A is is real analytic on {x = 0} ∪ {z = 0}, i.e., on
the whole CP2

� {y = 0} if (xx)q(zz)q|(a − 1).
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U(1) action on CP2 with 3 fixed points

The action of A maps

[1 : y : z] =
[1

z
:

y
z

: 1
]


−→
[1

z

( A((1/z)q)
(1/z)q

) 1
q
( |A((1/z)q)|
|1/z|q

)− 1
q

:
y
z

( A((1/z)q)
(1/z)q

) 1
p
( |A((1/z)q)|
|1/z|q

)− 1
p

: 1
]

=

[
1 : y

( A((1/z)q)
(1/z)q

) 1
p− 1

q
( |A((1/z)q)|
|1/z|q

)− 1
p+

1
q

: z
( A((1/z)q)

(1/z)q

)− 1
q
( |A((1/z)q)|
|1/z|q

) 1
q
]
.
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U(1) action on CP2 with 3 fixed points

Here
A((1/z)q)

(1/z)q
=

A((z/(zz)q)

(z/(zz)q
=

A((z)q)

(z)q

=
1
2

(a +
1
a

) +
1
2

a + 1
a

a − 1

(zz)q
z2q .

Hence the action of A is is realanalytic on {z = 0}, i.e., on the whole
CP2

� {x = 0} if (zz)q|(a − 1).

Thus the action of A extends to {x = 0} ∪ {y = 0} ∪ {z = 0} if
(xx)q(zz)q|(a − 1).
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U(1) action on CP2 with 3 fixed points

This means orbitwise rotation which is the identity on
{x = 0} ∪ {z = 0} and is sufficiently flat there can be written as a
product of commutators.

By changing the action of A, we have a similar conclusion with
respect to {x = 0} ∪ {y = 0} or {y = 0} ∪ {z = 0}.

The flatness at {[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]} can be achieved
when we apply the regimentation lemma.
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Diffω(CP2)0

Conclusion for CP2

Diffω(CP2)0 is a perfect group.

This can be shown by using a semi-free U(1) action on CP2 as well
as by using a U(1) action with 3 fixed points.
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Diffω(M4)0 with U(1) action

Conclusion for 4-manifolds M4 with U(1) action

In order to define an action of ˜SL(2; R), we need to define a
multi-section.

Adding circles and several arcs joining the isolated points to the
image of fixed points and multiple orbits in M4/U(1), we can define a
multi-section differentiably.

We would like to take a real analytic approximation of this
multi-section. Here we need to be more careful at the isolated points
where genericity argument might not be applied directly.
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THANKS

On behalf of all the participants of this meeting, I would like to thank the
organizers for their tremendous efforts to realize this nice meeting !
We spend a really fruitful week here in ENS de Lyon !

Happy Birthday Étienne !
We are sure that you continue working hard.

THANK YOU FOR YOUR ATTENTION !
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